Gurobi基础语法之 addConstr, addConstrs, addQConstr, addMQConstr

在新版本的 Gurobi 中,向 addConstr 这个方法中传入一个 TempConstr 对象,在模型中就会根据这个对象生成一个约束。更重要的是:TempConstr 对象可以传给所有addConstr系列方法,所以下面先介绍 TempConstr 对象

TempConstr

TempConstr 类的对象作为约束条件,其对象可以有以下几种形式:

  1. 线性约束:x + y <= 5

  2. 带上下界的线性约束:1 <= x + y <= 5

  3. 二次约束:x * x + y * y <= 3

  4. 用矩阵建立的线性约束:A @ x <= 1

  5. 二次型约束:x @ Q @ x <= y @ A @ y

  6. 带绝对值的函数的约束:x == abs_(y)

  7. 带逻辑运算符的约束:x == or_(y, z) 或者 x == and_(y, z)

  8. 带最大值或最小值函数的约束:x == max_(y, z) 或者 x == min_(y, z)

  9. 借助 TempConstr 自定义的运算符 >> 作为表达式中的运算符:(x == 1) >> (y + z <= 5)

有以下几点值得说明:

  1. Gurobi 中所有关系运算符都必须带等号,比如 <=, >=, == ,<, >, = 不合法,想要表示小于,例如 x + y < 5 这样的严格不等式约束,可以引入一个很小的值 epsilon,辅助实现严格不等式

  2. 上面说的第 7 点中,要求x, y 和 z 都是二元变量,即在添加进模型的时候就设计为GRB.BINARY

  3. 上面说的第 9 点中,(x == 1) >> (y + z <= 5) 表达的是,如果 x 为1,则 y + z 必须小于等于5,即 x 这个二元变量控制了后面的不等式约束是否存在

addConstr

Python定义:addConstr(constr, name='')

这个方法的第一个参数就是需要传入 TempConstr 类型的对象

addConstrs

Python定义:addConstrs(generator, name='')

这个方法的第一个参数是 Python 语法中的生成器,也就是说可以传入一个迭代器,通过循环就可以方便的在一行代码中就生成多个约束,下面是这个方法使用的一些例子

python 复制代码
m.addConstrs(x.sum(i, '*') <= capacity[i] for i in range(5))
m.addConstrs(x[i] + x[j] <= 1 for i in range(5) for j in range(5))
m.addConstrs(x[i]*x[i] + y[i]*y[i] <= 1 for i in range(5))
m.addConstrs(x.sum(i, '*') == [0, 2] for i in [1, 2, 4])

约束不可能凭空产生,起码需要先添加变量,关于添加变量的方法,已经在我的另外一篇博客 addVar 和 addVars的使用 中进行了说明

考虑到读者可能还不是很清楚 Gurobi 中 sum 方法的使用,这已经在我的另外一篇博客tupledict 中的 sum 方法中进行了说明

对于第三个添加的约束,实际上是添加了一个二次约束,对于二次约束,在模型的结果上有很多与线性约束不同的地方,这写不同点已经在我的另外一篇博客 带二次约束的模型解构说明中进行了说明

如何建立起一个约束带有上下界的线性优化模型?这在我的另一篇博客中Electricity Market Optimization 探索系列(一)已经进行了说明,

addQConstr

这个方法有两个版本

版本一:addQConstr(lhs, sense=None, rhs=None, name='')

代码示例:

python 复制代码
model.addQConstr(x*x + y*y, GRB.LESS_EQUAL, z*z, "c0")

版本二:使用 generator 添加约束

代码示例:

python 复制代码
model.addQConstr(x*x + y*y <= 2.0, "c1")

addMQConstr

Python 定义:addMQConstr(Q, c, sense, rhs, xQ_L=None, xQ_R=None, xc=None, name='')

实际上这里使用一个矩阵来定义二次约束,(注意可以不是二次型,而是带有交叉项的二次式)

这个二次约束形如

其中sense是一个关系运算符,rhs是一个常数

python 复制代码
Q = np.full((2, 3), 1)
xL = model.addMVar(2)
xR = model.addMVar(3)
model.addMQConstr(Q, None, '<', 1.0, xL, xR)
相关推荐
paopaokaka_luck1 小时前
婚纱摄影管理系统(发送邮箱、腾讯地图API、物流API、webSocket实时聊天、协同过滤算法、Echarts图形化分析)
vue.js·spring boot·后端·websocket·算法·echarts
愚戏师2 小时前
机器学习(重学版)基础篇(算法与模型一)
人工智能·算法·机器学习
OEC小胖胖4 小时前
渲染篇(二):解密Diff算法:如何用“最少的操作”更新UI
前端·算法·ui·状态模式·web
找不到、了4 小时前
Java排序算法之<归并排序>
算法·排序算法
香蕉可乐荷包蛋4 小时前
排序算法 (Sorting Algorithms)-Python示例
python·算法·排序算法
Sylvia-girl4 小时前
排序查找算法,Map集合,集合的嵌套,Collections工具类
java·算法·排序算法
TT哇5 小时前
【分治】归并排序——排序数组(medium)
java·算法·排序算法
skyang.5 小时前
LeetCode 85. 最大矩形
算法·leetcode·职场和发展
滋滋不吱吱6 小时前
枚举中间位置基础篇
考研·算法·leetcode
阳光不锈@6 小时前
算法:最长递增子序列解法记录
算法·最长递增子序列·超详细分析·java实现