数据分析系列--⑦RapidMiner模型评价(基于泰坦尼克号案例含数据集)

一、前提

二、模型评估

1.改造⑥

[2.Cross Validation算子说明](#2.Cross Validation算子说明)

[2.1Cross Validation 的作用](#2.1Cross Validation 的作用)

[2.1.1 模型评估](#2.1.1 模型评估)

[2.1.2 减少过拟合](#2.1.2 减少过拟合)

[2.1.3 数据利用](#2.1.3 数据利用)

[2.2 Cross Validation 的工作原理](#2.2 Cross Validation 的工作原理)

[2.2.1 数据分割](#2.2.1 数据分割)

[2.2.2 迭代训练与测试](#2.2.2 迭代训练与测试)

​​​​​​​ [2.2.3 结果汇总](#2.2.3 结果汇总)

​​​​​​​ [2.2.4 Cross Validation 的参数](#2.2.4 Cross Validation 的参数)

​​​​​​​ [2.2.5 Cross Validation 的流程](#2.2.5 Cross Validation 的流程)

​​​​​​​ [2.2.6 示例](#2.2.6 示例)

​​​​​​​ [2.2.7 总结](#2.2.7 总结)

[3 实践](#3 实践)

[4 结果说明](#4 结果说明)

​​​​​​​[5 决策依据](#5 决策依据)


一、前提

请确保已有第⑥小节中所完成的模型,没有可以点击数据分析系列--⑥RapidMiner构建决策树(泰坦尼克号案例含数据)

链接学习.

二、模型评估

1.改造⑥

⑥小节完成后的模型如下,复制粘贴保存为EvaluatingTheTitanicModel.

2.Cross Validation算子说明

在RapidMiner中,Cross Validation 又称为交叉验证 ,用于评估模型的性能和泛化能力 。它是一种统计方法 ,通过将数据集分成多个子集来训练和测试模型,从而减少过拟合评估偏差

2.1Cross Validation 的作用

2.1.1 模型评估
  • 交叉验证通过多次训练和测试模型,提供更可靠的性能评估(如准确率、精确率、召回率等)。

  • 与简单的训练-测试分割相比,交叉验证能更全面地反映模型的表现。

2.1.2 减少过拟合
  • 通过多次使用不同的训练和测试子集,交叉验证可以检测模型是否过拟合训练数据。
2.1.3 数据利用
  • 交叉验证充分利用所有数据,既用于训练也用于测试,适合数据量较少的情况。

2.2 Cross Validation 的工作原理

2.2.1 数据分割
  • 将数据集分成 \( k \) 个大小相似的子集(称为"折"或"folds")。

  • 例如,\( k=10 \) 表示 10 折交叉验证。

2.2.2 迭代训练与测试
  • 每次迭代中,选择一个子集作为测试集,其余 \( k-1 \) 个子集作为训练集。

  • 训练模型并在测试集上评估性能。

2.2.3 结果汇总
  • 所有迭代完成后,计算性能指标的平均值,作为模型的最终评估结果。
2.2.4 Cross Validation 的参数

在 RapidMiner 中,Cross Validation 算子有以下关键参数:

2.2.4.1 Number of folds(折数)

  • 决定将数据集分成多少个子集。常见值为 5 或 10。

2.2.4.2 Sampling type(采样类型)

  • 决定如何分割数据,例如分层采样(Stratified Sampling)可以保持类别分布。

2.2.4.3 Use local random seed(使用本地随机种子)

  • 控制数据分割的随机性,确保结果可重复。
2.2.5 Cross Validation 的流程

在 RapidMiner 中,Cross Validation 算子的典型流程如下:

  1. 将数据集连接到 Cross Validation 算子的输入端口。

  2. 在 Cross Validation 算子内部:

  • 将模型(如决策树、逻辑回归等)放入 Training 子流程。

  • 将性能评估算子(如 Performance)放入 Testing 子流程。

  1. 运行流程后,Cross Validation 会输出模型的平均性能指标。
2.2.6 示例

假设使用 5 折交叉验证评估决策树模型:

  1. 数据集被分成 5 个子集。

  2. 进行 5 次迭代:

  • 每次使用 4 个子集训练模型,1 个子集测试模型。
  1. 最终输出 5 次测试的平均准确率、F1 分数等。
2.2.7 总结

Cross Validation 算子的主要作用是:

  • 提供更可靠的模型性能评估。

  • 减少过拟合风险。

  • 充分利用数据,特别适合小数据集。

它是模型开发和评估中不可或缺的工具,帮助确保模型在实际应用中的稳定性和泛化能力。

3 实践

4 结果说明

这是一个混淆矩阵,根据混淆矩阵可知如下结果:

5 决策依据

Ending, congratulations, you're done.

相关推荐
لا معنى له27 分钟前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
齐齐大魔王5 小时前
COCO 数据集
人工智能·机器学习
爱笑的眼睛116 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
式5166 小时前
线性代数(八)非齐次方程组的解的结构
线性代数·算法·机器学习
Coding茶水间7 小时前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
土星云SaturnCloud8 小时前
液冷“内卷”:在局部优化与系统重构之间,寻找第三条路
服务器·人工智能·ai·计算机外设
brave and determined8 小时前
CANN训练营 学习(day9)昇腾AscendC算子开发实战:从零到性能冠军
人工智能·算法·机器学习·ai·开发环境·算子开发·昇腾ai
brave and determined9 小时前
CANN训练营 学习(day8)昇腾大模型推理调优实战指南
人工智能·算法·机器学习·ai实战·昇腾ai·ai推理·实战记录
源于花海9 小时前
迁移学习的第一类方法:数据分布自适应(1)——边缘分布自适应
人工智能·机器学习·迁移学习·数据分布自适应
小北方城市网9 小时前
鸿蒙6.0:生态质变与全场景智慧体验的全面跃升
人工智能·ai·鸿蒙6.0