自然语言处理-词嵌入 (Word Embeddings)

人工智能例子汇总:AI常见的算法和例子-CSDN博客

词嵌入(Word Embedding)是一种将单词或短语映射到高维向量空间的技术,使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息,使得相似的词在向量空间中具有相近的表示。

常见词嵌入方法

  1. 基于矩阵分解的方法

    • Latent Semantic Analysis (LSA)
    • Latent Dirichlet Allocation (LDA)
    • 非负矩阵分解 (NMF)
  2. 基于神经网络的方法

  3. 基于 Transformer 预训练模型的方法

    • ELMo(Embeddings from Language Models)
    • BERT(Bidirectional Encoder Representations from Transformers)
    • GPT(Generative Pre-trained Transformer)
    • T5(Text-To-Text Transfer Transformer)
相关推荐
极限实验室1 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿1 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫1 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手1 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记2 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元2 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术2 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端
超龄超能程序猿3 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉
要努力啊啊啊3 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘