自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

自定义数据集:通过继承 paddle.io.Dataset 类创建自定义数据集,并重写 getitemlen 方法。

定义逻辑回归模型:继承 paddle.nn.Layer 类,定义一个简单的线性层,并在 forward 方法中应用sigmoid激活函数。

训练模型:使用二元交叉熵损失函数 BCELoss 和随机梯度下降优化器 SGD 进行训练。

保存模型:使用 paddle.save 保存模型的参数。

加载模型并预测:加载保存的模型参数,设置模型为评估模式,然后对新数据进行预测。

import paddle

import numpy as np

from paddle.io import Dataset, DataLoader

自定义数据集

class MyDataset(Dataset):

def init(self, data, labels):

self.data = data

self.labels = labels

def getitem(self, idx):

return self.data[idx], self.labels[idx]

def len(self):

return len(self.data)

生成一些自定义数据

np.random.seed(0)

data = np.random.randn(100, 10).astype('float32')

labels = np.random.randint(0, 2, size=(100, 1)).astype('float32')

创建数据集和数据加载器

dataset = MyDataset(data, labels)

dataloader = DataLoader(dataset, batch_size=10, shuffle=True)

定义逻辑回归模型

class LogisticRegression(paddle.nn.Layer):

def init(self, input_dim):

super(LogisticRegression, self).init()

self.linear = paddle.nn.Linear(input_dim, 1)

def forward(self, x):

return paddle.nn.functional.sigmoid(self.linear(x))

model = LogisticRegression(input_dim=10)

定义损失函数和优化器

criterion = paddle.nn.BCELoss()

optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

训练模型

num_epochs = 100

for epoch in range(num_epochs):

for batch_data, batch_labels in dataloader:

optimizer.clear_grad()

outputs = model(batch_data)

loss = criterion(outputs, batch_labels)

loss.backward()

optimizer.step()

if (epoch + 1) % 10 == 0:

print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

保存模型

paddle.save(model.state_dict(), 'logistic_regression.pdparams')

加载模型进行预测

loaded_model = LogisticRegression(input_dim=10)

loaded_model.set_state_dict(paddle.load('logistic_regression.pdparams'))

loaded_model.eval()

进行预测

new_data = np.random.randn(10, 10).astype('float32')

new_data = paddle.to_tensor(new_data)

predictions = loaded_model(new_data)

print("Predictions:")

print(predictions)

相关推荐
FF-Studio15 分钟前
大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
人工智能·python·深度学习·神经网络·机器学习·语言模型·自然语言处理
狗头大军之江苏分军29 分钟前
疑似华为盘古AI大模型翻车造假风波【实时记录篇】
人工智能·机器学习·程序员
LucianaiB3 小时前
Chatbox➕知识库➕Mcp = 机器学习私人语音助手
机器学习·知识库·mcp·chatbox
SHIPKING3937 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
巴伦是只猫7 小时前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归
巴伦是只猫12 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手12 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
LCG元13 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
生态遥感监测笔记14 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘