自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

自定义数据集:通过继承 paddle.io.Dataset 类创建自定义数据集,并重写 getitemlen 方法。

定义逻辑回归模型:继承 paddle.nn.Layer 类,定义一个简单的线性层,并在 forward 方法中应用sigmoid激活函数。

训练模型:使用二元交叉熵损失函数 BCELoss 和随机梯度下降优化器 SGD 进行训练。

保存模型:使用 paddle.save 保存模型的参数。

加载模型并预测:加载保存的模型参数,设置模型为评估模式,然后对新数据进行预测。

import paddle

import numpy as np

from paddle.io import Dataset, DataLoader

自定义数据集

class MyDataset(Dataset):

def init(self, data, labels):

self.data = data

self.labels = labels

def getitem(self, idx):

return self.data[idx], self.labels[idx]

def len(self):

return len(self.data)

生成一些自定义数据

np.random.seed(0)

data = np.random.randn(100, 10).astype('float32')

labels = np.random.randint(0, 2, size=(100, 1)).astype('float32')

创建数据集和数据加载器

dataset = MyDataset(data, labels)

dataloader = DataLoader(dataset, batch_size=10, shuffle=True)

定义逻辑回归模型

class LogisticRegression(paddle.nn.Layer):

def init(self, input_dim):

super(LogisticRegression, self).init()

self.linear = paddle.nn.Linear(input_dim, 1)

def forward(self, x):

return paddle.nn.functional.sigmoid(self.linear(x))

model = LogisticRegression(input_dim=10)

定义损失函数和优化器

criterion = paddle.nn.BCELoss()

optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

训练模型

num_epochs = 100

for epoch in range(num_epochs):

for batch_data, batch_labels in dataloader:

optimizer.clear_grad()

outputs = model(batch_data)

loss = criterion(outputs, batch_labels)

loss.backward()

optimizer.step()

if (epoch + 1) % 10 == 0:

print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

保存模型

paddle.save(model.state_dict(), 'logistic_regression.pdparams')

加载模型进行预测

loaded_model = LogisticRegression(input_dim=10)

loaded_model.set_state_dict(paddle.load('logistic_regression.pdparams'))

loaded_model.eval()

进行预测

new_data = np.random.randn(10, 10).astype('float32')

new_data = paddle.to_tensor(new_data)

predictions = loaded_model(new_data)

print("Predictions:")

print(predictions)

相关推荐
毕设源码-钟学长1 小时前
【开题答辩全过程】以 基于协同过滤推荐算法的小说漫画网站设计与实现为例,包含答辩的问题和答案
算法·机器学习·推荐算法
渡我白衣1 小时前
【MySQL基础】(2):数据库基础概念
数据库·人工智能·深度学习·神经网络·mysql·机器学习·自然语言处理
【赫兹威客】浩哥2 小时前
交通违章识别数据集与YOLO系列模型训练成果
人工智能·深度学习·机器学习
Yeats_Liao2 小时前
微调决策树:何时使用Prompt Engineering,何时选择Fine-tuning?
前端·人工智能·深度学习·算法·决策树·机器学习·prompt
大山同学10 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
陈天伟教授11 小时前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
板面华仔12 小时前
机器学习入门(三)——决策树(Decision Tree)
人工智能·决策树·机器学习
源于花海12 小时前
迁移学习的前沿知识(AI与人类经验结合、传递式、终身、在线、强化、可解释性等)
人工智能·机器学习·迁移学习·迁移学习前沿
机 _ 长12 小时前
YOLO26 改进 | 基于特征蒸馏 | 知识蒸馏 (Response & Feature-based Distillation)
python·深度学习·机器学习
龙山云仓13 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene