自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

自定义数据集:通过继承 paddle.io.Dataset 类创建自定义数据集,并重写 getitemlen 方法。

定义逻辑回归模型:继承 paddle.nn.Layer 类,定义一个简单的线性层,并在 forward 方法中应用sigmoid激活函数。

训练模型:使用二元交叉熵损失函数 BCELoss 和随机梯度下降优化器 SGD 进行训练。

保存模型:使用 paddle.save 保存模型的参数。

加载模型并预测:加载保存的模型参数,设置模型为评估模式,然后对新数据进行预测。

import paddle

import numpy as np

from paddle.io import Dataset, DataLoader

自定义数据集

class MyDataset(Dataset):

def init(self, data, labels):

self.data = data

self.labels = labels

def getitem(self, idx):

return self.data[idx], self.labels[idx]

def len(self):

return len(self.data)

生成一些自定义数据

np.random.seed(0)

data = np.random.randn(100, 10).astype('float32')

labels = np.random.randint(0, 2, size=(100, 1)).astype('float32')

创建数据集和数据加载器

dataset = MyDataset(data, labels)

dataloader = DataLoader(dataset, batch_size=10, shuffle=True)

定义逻辑回归模型

class LogisticRegression(paddle.nn.Layer):

def init(self, input_dim):

super(LogisticRegression, self).init()

self.linear = paddle.nn.Linear(input_dim, 1)

def forward(self, x):

return paddle.nn.functional.sigmoid(self.linear(x))

model = LogisticRegression(input_dim=10)

定义损失函数和优化器

criterion = paddle.nn.BCELoss()

optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

训练模型

num_epochs = 100

for epoch in range(num_epochs):

for batch_data, batch_labels in dataloader:

optimizer.clear_grad()

outputs = model(batch_data)

loss = criterion(outputs, batch_labels)

loss.backward()

optimizer.step()

if (epoch + 1) % 10 == 0:

print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

保存模型

paddle.save(model.state_dict(), 'logistic_regression.pdparams')

加载模型进行预测

loaded_model = LogisticRegression(input_dim=10)

loaded_model.set_state_dict(paddle.load('logistic_regression.pdparams'))

loaded_model.eval()

进行预测

new_data = np.random.randn(10, 10).astype('float32')

new_data = paddle.to_tensor(new_data)

predictions = loaded_model(new_data)

print("Predictions:")

print(predictions)

相关推荐
强盛小灵通专卖员7 分钟前
DL00291-联邦学习以去中心化锂离子电池健康预测模型完整实现
人工智能·机器学习·深度强化学习·核心期刊·导师·小论文·大论文
计算机sci论文精选2 小时前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
Christo32 小时前
SIGKDD-2023《Complementary Classifier Induced Partial Label Learning》
人工智能·深度学习·机器学习
JXL18604 小时前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉4 小时前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
点云SLAM4 小时前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库
岁月静好20254 小时前
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
人工智能·机器学习
Godspeed Zhao5 小时前
自动驾驶中的传感器技术34——Lidar(9)
人工智能·机器学习·自动驾驶
山烛5 小时前
矿物分类系统开发笔记(二):模型训练[删除空缺行]
人工智能·笔记·python·机器学习·分类·数据挖掘
硅谷秋水7 小时前
在相机空间中落地动作:以观察为中心的视觉-语言-行动策略
机器学习·计算机视觉·语言模型·机器人