双目标定与生成深度图

基于C#联合Halcon实现双目标定整体效果

一,标定

1,标定前准备工作 (获取描述文件与获取相机参数)

针对标准标定板可以直接调用官方提供描述文件,也可以自己生成描述文件后用PS文件打印

2,相机标定

(获取标定信息通过find_calib_object将标定信息添加到calibDataID中,通过"获取最终标定信息"将左相机,右相机,设置的参考位姿进行信息整合)其原理与前面单相机标定原理一样,单相机标定可以参考:如何做一个C#仿Halcon Calibration插件-CSDN博客

多相机标定可以参考Halcon 多相机统一坐标系(标定)_多相机标定统一坐标系-CSDN博客

3,显示相机标定信息

(双目标定用到的参数:左相机参数,右相机参数,右相机相对位姿这三组参数,其他为辅助鉴定标定效果)

二,验证

1,通过标定板图像进行数据验证

复制代码
    RowsL := []
    ColsL := []
    RowsR := []
    ColsR := []
    for I := 1 to NumImages by 1
        select_obj (ImagesRectL, ImageRectifiedL, I)
        select_obj (ImagesRectR, ImageRectifiedR, I)
        find_caltab (ImageRectifiedL, CaltabL, CaltabFile, SizeGauss, MarkThresh, MinDiamMarks)
        find_marks_and_pose (ImageRectifiedL, CaltabL, CaltabFile, RectCamParL, StartThresh, DeltaThresh, MinThresh, Alpha, MinContLength, MaxDiamMarks, RCoordL, CCoordL, StartPoseL)
        find_caltab (ImageRectifiedR, CaltabR, CaltabFile, SizeGauss, MarkThresh, MinDiamMarks)
        find_marks_and_pose (ImageRectifiedR, CaltabR, CaltabFile, RectCamParR, StartThresh, DeltaThresh, MinThresh, Alpha, MinContLength, MaxDiamMarks, RCoordR, CCoordR, StartPoseR)
        RowsL := [RowsL,RCoordL]
        ColsL := [ColsL,CCoordL]
        RowsR := [RowsR,RCoordR]
        ColsR := [ColsR,CCoordR]
    endfor
    X := RowsR - RowsL
    EpipolarError := [mean(X),deviation(X)]

2,通过生成深度图像进行验证

2.1),加载图像并进行校正效果

复制代码
map_image (Image, Map, ImagesRect)

2.2)生成深度图像与分值图像

复制代码
binocular_distance (ImageRectifiedL, ImageRectifiedR, DistanceImage, ScoreImageDistance, RectCamParL, RectCamParR, RectLPosRectR, 'ncc', MaskWidth, MaskHeight, TextureThresh, MinDisparity, MaxDisparity, NumLevels, ScoreThresh, 'left_right_check', 'interpolation')

通过外部参数修改生成的深度图像效果

拟合平面,优化图像并获取最终高度范围内图像

图像优化可以参Halcon深度图高度测量

相关推荐
june-Dai Yi5 分钟前
免费的大语言模型API接口
人工智能·语言模型·自然语言处理·chatgpt·api接口
王哈哈^_^39 分钟前
【数据集】【YOLO】【目标检测】农作物病害数据集 11498 张,病害检测,YOLOv8农作物病虫害识别系统实战训推教程。
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·1024程序员节
数据库安全44 分钟前
牛品推荐|分类分级效能飞跃:美创智能数据安全分类分级平台
大数据·人工智能·分类
却道天凉_好个秋1 小时前
卷积神经网络CNN(六):卷积、归一化与ReLU总结
人工智能·神经网络·cnn
澄澈青空~1 小时前
blender拓扑建模教程
人工智能·blender
湘-枫叶情缘1 小时前
宫殿记忆术AI训练系统:可扩展的终身记忆框架
人工智能·深度学习
Dev7z2 小时前
基于Swin Transformer的糖尿病视网膜病变影像分类与诊断系统
人工智能·深度学习·transformer
深蓝岛2 小时前
目标检测核心技术突破:六大前沿方向
论文阅读·人工智能·深度学习·计算机网络·机器学习
晚霞apple2 小时前
特征融合与目标检测的六大创新方向
论文阅读·人工智能·深度学习·神经网络·机器学习
算家计算2 小时前
外卖巨头变身AI黑马!美团开源视频大模型,性能比肩谷歌Veo3
人工智能