【starrocks学习】之将starrocks表同步到hive

目录

[方法 1:通过HDFS导出数据](#方法 1:通过HDFS导出数据)

[1. 将StarRocks表数据导出到HDFS](#1. 将StarRocks表数据导出到HDFS)

[2. 在Hive中创建外部表](#2. 在Hive中创建外部表)

[3. 验证数据](#3. 验证数据)

[方法 2:使用Apache Spark同步](#方法 2:使用Apache Spark同步)

[1. 添加StarRocks和Hive的依赖](#1. 添加StarRocks和Hive的依赖)

[2. 使用Spark读取StarRocks数据并写入Hive](#2. 使用Spark读取StarRocks数据并写入Hive)

[3. 验证数据](#3. 验证数据)

[方法 3:通过文件导出和导入](#方法 3:通过文件导出和导入)

[1. 导出StarRocks数据到本地文件](#1. 导出StarRocks数据到本地文件)

[2. 将文件上传到HDFS](#2. 将文件上传到HDFS)

[3. 在Hive中加载数据](#3. 在Hive中加载数据)

[4. 验证数据](#4. 验证数据)


方法 1:通过HDFS导出数据

1. 将StarRocks表数据导出到HDFS

使用StarRocks的EXPORT语句将数据导出到HDFS。

sql 复制代码
EXPORT TABLE starrocks_table
TO "hdfs://path/to/export"
WITH BROKER "broker_name"
(
    "username"="hdfs_user",
    "password"="hdfs_password"
)
PROPERTIES
(
    "format" = "parquet",  -- 导出格式,支持Parquet、ORC等
    "column_separator" = ","
);

2. 在Hive中创建外部表

在Hive中创建一个外部表,指向HDFS上的数据。

sql 复制代码
CREATE EXTERNAL TABLE hive_table (
    column1 INT,
    column2 STRING,
    ...
)
STORED AS PARQUET  -- 与导出格式一致
LOCATION 'hdfs://path/to/export';

3. 验证数据

查询Hive表,确认数据已同步。

方法 2:使用Apache Spark同步

如果StarRocks和Hive都支持Spark访问,可以通过Spark读取StarRocks数据并写入Hive。

1. 添加StarRocks和Hive的依赖

在Spark项目中添加StarRocks和Hive的依赖。

XML 复制代码
<!-- StarRocks Spark Connector -->
<dependency>
    <groupId>com.starrocks</groupId>
    <artifactId>spark-connector</artifactId>
    <version>1.0.0</version>
</dependency>

<!-- Hive Support -->
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-hive_2.12</artifactId>
    <version>3.1.2</version>
</dependency>

2. 使用Spark读取StarRocks数据并写入Hive

编写Spark作业,从StarRocks读取数据并写入Hive。

Scala 复制代码
import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder()
    .appName("StarRocks to Hive Sync")
    .enableHiveSupport()
    .getOrCreate()

// 读取StarRocks表
val starrocksDF = spark.read
    .format("starrocks")
    .option("starrocks.table.identifier", "database.starrocks_table")
    .option("starrocks.fenodes", "fe_host:fe_http_port")
    .option("user", "starrocks_user")
    .option("password", "starrocks_password")
    .load()

// 写入Hive表
starrocksDF.write
    .mode("overwrite")  // 覆盖模式
    .saveAsTable("hive_database.hive_table")

3. 验证数据

查询Hive表,确认数据已同步。

sql 复制代码
SELECT * FROM hive_table LIMIT 10;
SELECT count(*) FROM hive_table;

方法 3:通过文件导出和导入

如果数据量较小,可以先将StarRocks表数据导出为本地文件,再通过Hive的LOAD DATA命令导入。

1. 导出StarRocks数据到本地文件

使用StarRocks的SELECT INTO OUTFILE命令导出数据。

sql 复制代码
SELECT * 
INTO OUTFILE "file:///path/to/local/file"
FORMAT AS CSV
FROM starrocks_table;

2. 将文件上传到HDFS

将导出的文件上传到HDFS。

bash 复制代码
hdfs dfs -put /path/to/local/file /path/to/hdfs/file

3. 在Hive中加载数据

在Hive中创建表并加载数据。

sql 复制代码
CREATE TABLE hive_table (
    column1 INT,
    column2 STRING,
    ...
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE;

LOAD DATA INPATH 'hdfs://path/to/hdfs/file' INTO TABLE hive_table;

4. 验证数据

查询Hive表,确认数据已同步。

sql 复制代码
SELECT * FROM hive_table LIMIT 10;
SELECT count(*) FROM hive_table;

ps:操作1、2也可替换成直接上传到hdfs

sql 复制代码
INSERT INTO 
FILES(
    'path' = '/path/to/hdfs/file',
    'format' = 'parquet',
    'compression' = 'lz4',
    'single' = 'true'
)
SELECT * FROM starrocks_table;
相关推荐
★YUI★1 小时前
学习游戏制作记录(制作系统与物品掉落系统)8.16
学习·游戏·ui·unity·c#
努力还债的学术吗喽1 小时前
【速通】深度学习模型调试系统化方法论:从问题定位到性能优化
人工智能·深度学习·学习·调试·模型·方法论
超级迅猛龙4 小时前
保姆级Debezium抽取SQL Server同步kafka
数据库·hadoop·mysql·sqlserver·kafka·linq·cdc
青云交4 小时前
Java 大视界 -- Java 大数据分布式计算在基因测序数据分析与精准医疗中的应用(400)
java·hadoop·spark·分布式计算·基因测序·java 大数据·精准医疗
南猿北者6 小时前
Cmake学习笔记
笔记·学习·策略模式
diablobaal7 小时前
云计算学习100天-第26天
学习·云计算
测试老哥8 小时前
pytest+requests+allure自动化测试接入Jenkins学习
自动化测试·软件测试·学习·测试工具·职场和发展·jenkins·pytest
Lx3528 小时前
Hadoop小文件处理难题:合并与优化的最佳实践
大数据·hadoop
diablobaal11 小时前
云计算学习100天-第21天
学习
君不见,青丝成雪13 小时前
Hadoop技术栈(四)HIVE常用函数汇总
大数据·数据库·数据仓库·hive·sql