多无人机--强化学习

这个是我对于我的大创项目的构思,随着时间逐渐更新

项目概要

我们的项目平台来自挑战杯揭绑挂帅的无人机对抗项目,但是在由于时间原因,并未考虑强化学习,所以现在通过大创项目来弥补遗憾

我们项目分为三部分,分为虚拟机,态势系统,和运行程序端(使用主机)

虚拟机内包含各种无人机信息,并封装为接口供windows端控制

态势系统主要是用来显示战场的情况,使得态势可视化

运行程序端编写程序进行无人机控制

启动顺序为

虚拟机-》态势系统-》运行程序端

项目学习基础

强化学习:

学习马尔可夫决策决策过程(MDP)

学习强化学习主要算法:

值迭代法,策略梯度法 重点学习PPO和DDPG

如果对于强化学习公式的了解较少的可以观看b站上的课程

【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili

由于这里我们目前所使用的公式原因,先学习

了解仿真平台

对于各种API的研究(前期工作)

理解无人机的各种参数

对于linux系统的了解(前期工作)

学习一些基础操作,并对于其提供的虚拟机实现了解

对于强化学习接口搭建(完成Gym接口)封装Linux接口作为训练环境

首先利用PPO/DDPG训练单无人机基础移动(边界避障,上下限制)

进行侦察训练,导弹躲避训练

然后再加入对抗系统,使得无人机与敌机进行交互

首先是蓝方设计固定策略进行训练

然后红蓝方都进行强化学习训练

目前较为适合的最终算法(改进的MADDPG)

基础知识

Linux

一些基础linux命令总结为linux命令

如下

linux命令-CSDN博客

然后需要查看shell脚本

这里推荐黑马程序员的课程

02.shell入门(1)_哔哩哔哩_bilibili

强化学习

然后是强化学习的基础知识

马尔可夫决策

基本元素

  1. 状态集(State Space)

    记为 S,表示系统可能处于的所有状态的集合。例如,在一个迷宫环境中,每个格子可以看作一个状态;在资源分配问题中,状态可以是当前资源的使用量、剩余量等的组合。

  2. 动作集(Action Space)

    记为 A,表示在每个状态下可执行的所有动作。例如,在迷宫中可向上、下、左、右移动;在资源分配问题中可以为"给某个任务分配多少资源"等不同策略选项。

  3. 状态转移概率(Transition Probability)

    记为 P(s′∣s,a),表示当前处于状态 s,执行动作 a 之后,转移到下一状态 s′ 的概率。这也是"马尔可夫"性质的来源:转移只与当前状态和当前动作相关,而与之前的历史状态无关。

  4. 奖励函数(Reward Function)

    记为 R(s,a)或 R(s,a,s′),表示在状态 s 执行动作 a并转移到状态 s′时得到的即时回报。这个回报值可能是正的(奖励)或负的(惩罚)。

  5. 折扣因子(Discount Factor)

    记为 γ,取值范围通常在 [0,1] 之间。它用于平衡短期和长期收益的重要性:当 γ越接近 1 时,更注重长期回报;当 γ越小,越关注即时回报。

决策过程

  • 观察状态

    系统(或智能体)观察当前状态 s。

  • 选择动作

    根据一定的策略(policy)π\piπ,在状态 sss 下选择一个动作 aaa。策略 π\piπ 可以理解为一个函数或规则,用于指定在不同状态下执行哪一个动作。

  • 环境反馈

    • 状态转移:在环境中执行动作 aaa 后,系统会随机地转移到下一个状态 s′s's′(由转移概率 P(s′∣s,a)P(s' \mid s,a)P(s′∣s,a) 决定)。
    • 得到奖励:与此同时,系统给予执行该动作的即时回报 R(s,a)R(s,a)R(s,a) 或 R(s,a,s′)R(s, a, s')R(s,a,s′)。
  • 更新决策

    基于新的状态 s′s's′ 和获得的奖励,智能体可以对其策略 π\piπ 进行更新或继续保持不变,具体取决于使用的算法(例如价值迭代、策略迭代、Q 学习、深度强化学习等)。

  • 进入下一轮决策

    新的状态 s′s's′ 成为当前状态,系统重复上述过程,直到达到终止条件(如达到目标状态、达到最大交互步数、收敛到稳定策略等)

PPO
DDPG

note:无人机飞行是连续的动作,使用 DDPG

聚焦连续动作空间,使用确定性策略和 Critic-Q 网络来估计动作价值,具备较高的数据利用效率,但也对训练稳定性和超参数选择有更高要求。

MADDPG

多无人机对战是多智能体和DDPG的结合

  • 集中式 Critic :在训练过程中,每个智能体的 Critic 都可以访问 全局信息,包括所有智能体的状态和动作。这使得 Critic 在更新时对环境动态和其他智能体决策有更全面的认识,缓解了环境非平稳问题。
  • 分散式 Actor:在执行阶段,每个智能体只基于自身的局部观测来进行决策,保持灵活性与可扩展性。

初步研究

动作设置:

我们使用机动号操作无人机进行对战,一共执行五个状态,平飞,俯冲,平飞加减速,爬升,转弯

奖励函数设置

初步设计为分为多个阶段,进行分开训练,分为巡航,进攻,躲避,撤退四个策略,通过条件进行状态转移

开始设计初步的奖励和惩罚函数

巡航:

奖励项:侦察到敌方无人机,侦察到敌方无人机时的高度差

惩罚项:碰撞到边界

进攻:

奖励项:导弹命中敌方无人机

惩罚项:敌方无人机脱离我方锁定

躲避:

奖励:躲避敌方导弹

撤退:

奖励:??

惩罚:被敌方无人机侦测

相关推荐
云卓SKYDROID1 天前
无人机3控接力模式技术分析
无人机·通道·遥控器·高科技·云卓科技
云卓SKYDROID1 天前
无人机载重模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
森焱森1 天前
无人机三轴稳定化控制(1)____飞机的稳定控制逻辑
c语言·单片机·算法·无人机
通信与导航1 天前
无人机Ku相控阵卫星通信系统技术说明
无人机·信息与通信·射频工程·基带工程
阿木实验室1 天前
Science Robotics发表 | 20m/s自主飞行+避开2.5mm电线的微型无人机!
无人机·机器人前沿
云卓SKYDROID1 天前
无人机RTK技术要点与难点分析
人工智能·无人机·科普·高科技·云卓科技
森焱森2 天前
无人机三轴稳定控制(2)____根据目标俯仰角,实现俯仰稳定化控制,计算出升降舵输出
c语言·单片机·算法·架构·无人机
中达瑞和-高光谱·多光谱2 天前
城市河道无人机高光谱水质监测技术研究与应用
无人机
go54631584652 天前
修改Spatial-MLLM项目,使其专注于无人机航拍视频的空间理解
人工智能·算法·机器学习·架构·音视频·无人机
Deepoch3 天前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机