使用朴素贝叶斯对散点数据进行分类

本文将通过一个具体的例子,展示如何使用 Python 和 scikit-learn 库中的 GaussianNB 模型,对二维散点数据进行分类,并可视化分类结果。

1. 数据准备

假设我们有两个类别的二维散点数据,每个类别包含若干个点。我们将这些点分别存储为 NumPy 数组,并为每个点分配一个类别标签。

python 复制代码
import numpy as np

# 类别 1 的点集
class1_points = np.array([[1.9, 1.2],
                          [1.5, 2.1],
                          [1.9, 0.5],
                          [1.5, 0.9],
                          [0.9, 1.2],
                          [1.1, 1.7],
                          [1.4, 1.1]])

# 类别 2 的点集
class2_points = np.array([[3.2, 3.2],
                          [3.7, 2.9],
                          [3.2, 2.6],
                          [1.7, 3.3],
                          [3.4, 2.6],
                          [4.1, 2.3],
                          [3.0, 2.9]])

# 合并数据
X = np.vstack((class1_points, class2_points))

# 创建标签
y = np.array([0] * len(class1_points) + [1] * len(class2_points))

2. 训练朴素贝叶斯模型

朴素贝叶斯分类器基于贝叶斯定理,假设特征之间相互独立。GaussianNB 是一种适用于连续数值型数据的朴素贝叶斯分类器,它假设每个特征的分布符合高斯分布。

python 复制代码
from sklearn.naive_bayes import GaussianNB

# 初始化朴素贝叶斯分类器
model = GaussianNB()

# 训练模型
model.fit(X, y)

3. 可视化分类结果

为了更好地理解模型的分类效果,我们可以绘制散点图,并显示决策边界。这有助于直观地观察模型如何区分两个类别。

python 复制代码
import matplotlib.pyplot as plt

# 创建网格点
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
                     np.arange(y_min, y_max, 0.1))

# 预测网格点的类别
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

# 绘制决策边界和散点图
plt.contourf(xx, yy, Z, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Naive Bayes Decision Boundary')
plt.show()

可视化结果展示:

4. 预测新数据点

训练好的模型可以用于对新的数据点进行分类。我们将提供一些新的数据点,并使用模型预测它们的类别。

python 复制代码
# 新数据点
new_points = np.array([[2.0, 2.0],
                       [3.5, 3.0]])

# 预测新数据点的类别
new_predictions = model.predict(new_points)
print("New points predictions:", new_predictions)

预测结果:

5. 完整代码

以下是完整的代码实现,包括数据准备、模型训练、可视化和新数据点的预测。

python 复制代码
import numpy as np
from sklearn.naive_bayes import GaussianNB
import matplotlib.pyplot as plt

# 类别 1 的点集
class1_points = np.array([[1.9, 1.2],
                          [1.5, 2.1],
                          [1.9, 0.5],
                          [1.5, 0.9],
                          [0.9, 1.2],
                          [1.1, 1.7],
                          [1.4, 1.1]])

# 类别 2 的点集
class2_points = np.array([[3.2, 3.2],
                          [3.7, 2.9],
                          [3.2, 2.6],
                          [1.7, 3.3],
                          [3.4, 2.6],
                          [4.1, 2.3],
                          [3.0, 2.9]])

# 合并数据
X = np.vstack((class1_points, class2_points))

# 创建标签
y = np.array([0] * len(class1_points) + [1] * len(class2_points))

# 初始化朴素贝叶斯分类器
model = GaussianNB()

# 训练模型
model.fit(X, y)

# 创建网格点
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
                     np.arange(y_min, y_max, 0.1))

# 预测网格点的类别
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

# 绘制决策边界和散点图
plt.contourf(xx, yy, Z, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Naive Bayes Decision Boundary')
plt.show()

# 新数据点
new_points = np.array([[2.0, 2.0],
                       [3.5, 3.0]])

# 预测新数据点的类别
new_predictions = model.predict(new_points)
print("New points predictions:", new_predictions)
相关推荐
吴佳浩27 分钟前
大模型量化部署终极指南:让700亿参数的AI跑进你的显卡
人工智能·python·gpu
跨境卫士苏苏1 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
珠海西格电力1 小时前
零碳园区工业厂房光伏一体化(BIPV)基础规划
大数据·运维·人工智能·智慧城市·能源
土星云SaturnCloud2 小时前
不止是替代:从机械风扇的可靠性困局,看服务器散热技术新范式
服务器·网络·人工智能·ai
小马爱打代码2 小时前
Spring AI:搭建自定义 MCP Server:获取 QQ 信息
java·人工智能·spring
你们补药再卷啦2 小时前
ai(三)环境资源管理
人工智能·语言模型·电脑
飞哥数智坊2 小时前
GLM-4.6V 初探:国产 AI 能边写边自己配图了
人工智能·chatglm (智谱)
杰克逊的日记3 小时前
大模型的原理是什么
人工智能·大模型·gpu·算力
智算菩萨3 小时前
AI在智能制造中的落地:从预测维护到自适应生产调度
人工智能·制造
云和数据.ChenGuang3 小时前
AI 算力竞争下的昇腾硬件定位
人工智能