强化学习笔记6——异同策略、AC、等其他模型总结

异步两种方法:1:经验回放 2:数据动作非同时产生

举例QLearning为什么是异策略?

生成动作时e的概率从Q表选,1-e概况随机。 更新策略时,贪心策略选择Q_max作为动作。

策略优化两种主要方法:基于梯度下降和基于值函数

Policy Gradient主要缺点:不稳定 (坏策略迭代导致越来越坏),都是on-policy的 始终都是一种策略采样和更新效率低。
###########################################################################

Policy Gradient主要优化目标:(笔记5里有讲)

这里对比A3C 改进版的优化目标

############################################################################

AC,A2C,A3C 参考



这里注意Critic网络和Actor网络的更新:

对于Actor网络的策略梯度更新,使用Glearning策略梯度定理根据当前的策略 计算更新梯度

对于Critic网络的值函数更新,我们可以使用TD误差来计算当前状态值和下一时刻状态值之间的误差

A2C使用优势函数代替Critic网络中的原始回报Gt,可以作为衡量选取动作值和所有动作平均值好坏的指标。

A3C中,有一个全局网络(global network)和多个工作智能体(worker)

global network和worker里面都是A2C

worker和环境交互计算梯度不更新,传给globalNet。

globalNet不和环境交互,收集所有worker传来的梯度一起更新,然后将参数copy给worker。

==

总结:AC更新 actor使用策略梯度下降更新

Critic使用一下6选1都可以更新

相关推荐
songyuc1 天前
Simulations RL 平台学习笔记
rl
deepdata_cn4 天前
强化学习框架(AReaL)
强化学习
计算机sci论文精选7 天前
CVPR 强化学习模块深度分析:连多项式不等式+自驾规划
人工智能·深度学习·机器学习·计算机视觉·机器人·强化学习·cvpr
Baihai_IDP9 天前
强化学习的“GPT-3 时刻”即将到来
人工智能·llm·强化学习
@LijinLiu9 天前
强化学习基本实操
计算机视觉·强化学习
xwz小王子9 天前
Science Robotics 丰田研究院提出通过示例引导RL的全身丰富接触操作学习方法
rl
龙腾亚太16 天前
基于深度强化学习的无人机自主感知−规划−控制策略
机器学习·无人机·强化学习·深度强化学习
聚客AI17 天前
🧩万亿级Token训练!解密大模型预训练算力黑洞与RLHF对齐革命
人工智能·llm·强化学习
nju_spy18 天前
王树森深度强化学习DRL(三)围棋AlphaGo+蒙特卡洛
强化学习·南京大学·alphago·蒙特卡洛树搜索·策略网络·价值网络·随机梯度算法
oscar99919 天前
端到端测试:复杂系统的终极体检术
e2e·端到端