强化学习笔记6——异同策略、AC、等其他模型总结

异步两种方法:1:经验回放 2:数据动作非同时产生

举例QLearning为什么是异策略?

生成动作时e的概率从Q表选,1-e概况随机。 更新策略时,贪心策略选择Q_max作为动作。

策略优化两种主要方法:基于梯度下降和基于值函数

Policy Gradient主要缺点:不稳定 (坏策略迭代导致越来越坏),都是on-policy的 始终都是一种策略采样和更新效率低。
###########################################################################

Policy Gradient主要优化目标:(笔记5里有讲)

这里对比A3C 改进版的优化目标

############################################################################

AC,A2C,A3C 参考



这里注意Critic网络和Actor网络的更新:

对于Actor网络的策略梯度更新,使用Glearning策略梯度定理根据当前的策略 计算更新梯度

对于Critic网络的值函数更新,我们可以使用TD误差来计算当前状态值和下一时刻状态值之间的误差

A2C使用优势函数代替Critic网络中的原始回报Gt,可以作为衡量选取动作值和所有动作平均值好坏的指标。

A3C中,有一个全局网络(global network)和多个工作智能体(worker)

global network和worker里面都是A2C

worker和环境交互计算梯度不更新,传给globalNet。

globalNet不和环境交互,收集所有worker传来的梯度一起更新,然后将参数copy给worker。

==

总结:AC更新 actor使用策略梯度下降更新

Critic使用一下6选1都可以更新

相关推荐
DuanGe3 天前
Chrome浏览器页面中跳转到IE浏览器页面
强化学习
阿里云大数据AI技术5 天前
基于PAI-ChatLearn的GSPO强化学习实践
人工智能·llm·强化学习
代码哲学系6 天前
第一阶段:Java基础入门④Java核心API
java·强化学习
防搞活机7 天前
强化学习笔记:从Q学习到GRPO
笔记·深度学习·机器学习·强化学习
我爱C编程9 天前
基于Qlearning强化学习的水下无人航行器三维场景路径规划与避障系统matlab性能仿真
matlab·强化学习·qlearning·三维路径规划
有梦想的攻城狮9 天前
Q-Learning详解:从理论到实践的全面解析
强化学习·q-learning
威化饼的一隅14 天前
【多模态】DPO学习笔记
大模型·llm·强化学习·rlhf·dpo
雪碧聊技术19 天前
机器学习的算法有哪些?
监督学习·强化学习·无监督学习·半监督学习·机器学习的算法
山顶夕景20 天前
【LLM】Kimi-K2模型架构(MuonClip 优化器等)
大模型·llm·agent·强化学习·智能体
ziix23 天前
多源信息融合智能投资【“图神经网络+强化学习“的融合架构】【低配显卡正常运行】
人工智能·深度学习·神经网络·强化学习·图神经网络·gnn