【生成模型之十四】Visual Autoregressive Modeling

论文:Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction

code:GitHub - FoundationVision/VAR: [NeurIPS 2024 Best Paper][GPT beats diffusion🔥] [scaling laws in visual generation📈] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction". An *ultra-simple, user-friendly yet state-of-the-art* codebase for autoregressive image generation!

一、背景

我们提出了视觉自回归建模(VAR),这是一种新一代范式,将图像的自回归学习重新定义为从粗到细的"next-scale prediction"或"next-resolution prediction",与标准的"next-token prediction"不同。这种简单直观的方法允许自回归(AR)Transformer快速学习视觉分布,并且可以很好地泛化。large AR模型强调scalability and generalizabilty

VQGAN and DALL-E这些模型利用视觉标记器将连续图像离散化为2D token的网格,然后将其展平为1D序列以进行AR学习(图2b),反映了顺序语言建模的过程(图2a)。

二、方法

image VAR:multi-scale token maps 是从粗到细(从低到高分辨率)自回归生成的,每个尺度内都有并行token生成。VAR需要多尺度VQVAE才能工作。

自回归建模需要定义数据的顺序。我们的工作重新考虑了如何"排序"图像:人类通常以层次化的方式感知或创建图像,首先限制全局结构,然后限制局部细节。这种多尺度、从粗到细的性质表明了图像的"顺序"。

VAR实现方式:我们的方法首先将图像编码为multi-scale token maps。然后,渐进过程从1×1的token映射开始,并在分辨率上逐渐扩展:在每一步,transformer都会根据所有先前的token映射预测下一个更高分辨率的token映射。我们将这种方法称为视觉自回归(VAR)建模。

关于原有的自回归模型弱点的讨论。tokenizer和flatten方法允许对图像进行下一个token自回归学习,但引入了几个问题:

1.Mathematical premise violation(违反数学前提);在量化自编码器(VQVAE)中,编码器通常会生成一个图像特征图f,其中包含所有i,j的相互依赖的特征向量f(i,j)。因此,在量化和flatten之后,令牌序列(x1,x2,...,xh×w)保持双向相关性。这与自回归模型的单向依赖假设相矛盾,该假设规定每个标记xt只应依赖于其前缀(x1,x2,...,xt-1)。

2.Inability to perform some zero-shot generalization;与问题1)类似,图像自回归建模的单向性限制了它们在需要双向推理的任务中的泛化能力。例如,给定图像的底部,它无法预测图像的顶部。

3.Structural degradation.

三、Implementation details

VAR tokenizer。如前所述,我们使用vanilla VQVAE架构[30]和具有K个额外卷积(0.03M额外参数)的多尺度量化方案。对于V=4096的所有标度,我们使用共享码本。根据基线[30],我们的tokenizer也在OpenImages[49]上进行了训练,复合损失(5)和空间下采样率为16×。

im为输入图像,E(·) a encoder, and Q(·) a quantizer. a learnable codebook Z ∈ RV ×C containing V vectors. where lookup(Z, v) means taking the v-th vector in codebook Z.

VAR transformer。我们主要关注VAR算法,因此我们保持了简单的模型架构设计。我们采用了类似于GPT-2和VQ-GAN[66,30]的具有自适应归一化(AdaLN)的标准decoder-only transformers 的架构,该架构在许多视觉生成模型中得到了广泛采用并被证明是有效的。对于类条件合成,我们使用类嵌入作为开始标记[s],以及AdaLN的条件。

相关推荐
游戏智眼14 小时前
AI 游戏的创新与挑战都有哪些?
人工智能·游戏·ai·游戏引擎·aigc
量子位15 小时前
清华率先开源 AI 制药智能体平台!生物科研进入 Autopilot 时代
人工智能·aigc
程序视点15 小时前
为什么你的 AI 助手总是答非所问?
aigc·deepseek·ai 编程
Z_W_H_17 小时前
【AI】Stable Diffusion安装
人工智能·stable diffusion
努力进修19 小时前
通义万相 2.1 × 蓝耘智算:AIGC 界的「黄金搭档」如何重塑创作未来?
人工智能·aigc·deepseek·蓝耘·通义万相2.1
Eagle_Clark20 小时前
提示词工程(Prompt Engineering)
人工智能·aigc·openai
努力进修1 天前
通义万相 2.1 与蓝耘智算平台的深度协同,挖掘 AIGC 无限潜力并释放巨大未来价值
aigc·蓝耘·通义万相2.1
凡人的AI工具箱1 天前
PyTorch深度学习框架进阶学习计划 - 第20天:端到端图像生成系统
人工智能·pytorch·python·深度学习·学习·aigc·ai编程
Liudef061 天前
Stable Diffusion游戏底模推荐
游戏·stable diffusion
LeeZhao@1 天前
【AIGC】计算机视觉-YOLO系列家族
yolo·计算机视觉·aigc