高速艇在波浪中的垂直运动MATLAB模拟与仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

高速艇在波浪中的垂直运动MATLAB模拟与仿真。参考文献《Dynamic motions of planing vessels in head seas》中的方法,对滑航船在规则海头海中的动态响应进行了数值研究。采用二维 边界元方法来解决2D横截面中的初始边界值问题,其中满足非线性自由表面条件和精确的体边界条件。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

俯仰力矩的尖峰将影响俯仰加速度,从而导致琴弓处的加速度出现尖峰。从图 中可以看出,总垂直力和 COG 的加速度同时在瞬间有小的尖峰,但这些峰值不如俯仰力矩和船首的加速度那么突出。

3.核心程序

复制代码
...................................................
%accelerations1
Fz   = -DADt.*V - A.*DVDt + p*g*S;%(27)
Fz0  =  mean(Fz);
Acc1 = (Fz-Fz0)/M;

%accelerations2
Acc2 = Acc1+fxt/M;

figure;
subplot(611);
plot(x,r3,'k','linewidth',1);
xlabel('Time (s)');
ylabel('Heave (m)');
xlim([-0.25,4.25]);
ylim([-0.03,0.03]);
grid on

subplot(612);
plot(x,r5,'k','linewidth',1);
xlabel('Time (s)');
ylabel('Pitch (m)');
xlim([-0.25,4.25]);
ylim([-3,3]);
grid on

subplot(613);
plot(x,fxt,'k','linewidth',1);
xlabel('Time (s)');
ylabel('F_3*');
xlim([-0.25,4.25]);
ylim([0.02,0.12]);
grid on

subplot(614);
plot(x,F5,'k','linewidth',1);
xlabel('Time (s)');
ylabel('F_5*');
xlim([-0.25,4.25]);
ylim([-0.03,0.03]);
grid on


subplot(615);
plot(x,Acc1,'k','linewidth',1);
xlabel('Time (s)');
ylabel('Acc. at COG(g)');
xlim([-0.25,4.25]);
ylim([-0.6,0.6]);
grid on
 
subplot(616);
plot(x,Acc2,'k','linewidth',1);
xlabel('Time (s)');
ylabel('Acc. at bow(g)');
xlim([-0.25,4.25]);
ylim([0,3]);
grid on
16_065m

4.本算法原理

滑行艇在休闲、体育和军事领域应用广泛,其在波浪中的运动问题复杂。早期研究多关注稳态问题,对非稳态问题研究不足。2D + t 理论可用于解决强非线性水动力问题,本研究基于此理论改进并应用于滑行艇在波浪中的动态运动模拟。

定义坐标系,假定水为无黏性、不可压缩且水流无旋,引入速度势描述水流,将总速度势分解为入射波势和扰动势。在船体表面、自由表面等边界上给出相应条件,得到扰动速度势的时变边值问题。考虑船舶在波浪中的非稳态运动,仅研究垂荡和纵摇运动,给出船体表面点的速度表达式。

基于细长体假设简化三维问题为二维时变问题,得到二维拉普拉斯方程和边界条件。使用边界元法求解二维问题,考虑水流分离和压力计算,引入辅助函数求解。在数值计算中,先进行稳态计算得到初始条件,再逐步引入入射波。通过在多个垂直固定横剖面求解边值问题,计算船体的总垂直力和纵摇力矩,进而求解运动方程得到垂荡和纵摇运动。在新平面计算时要考虑船舶截面的淹没情况,并采用修正的初始自由表面轮廓。利用近似方法计算船体前部的力分布,逐步引入波浪效应。建立以船舶重心为原点的惯性坐标系下的垂荡和纵摇运动方程,考虑附加质量力对运动方程进行改写,以提高计算精度。在某些情况下需替换特定附加质量系数以保证计算收敛。

Fridsma 进行了滑行艇在波浪中的模型试验,本文对其中四个配置进行数值研究,这些配置代表不同速度和负载系数。试验中模型船的一些参数已知,试验考虑了不同波长的规则入射波,但数值研究未考虑船头特殊形状。

先对每个配置进行稳态滑行模拟得到初始条件,再求解二维边值问题得到船舶运动响应。通过收敛性测试确定合适的计算平面数量。分析不同配置下船舶运动响应的时间历程,发现速度较快的情况过渡阶段更长,非线性在接近共振频率时更显著。对比数值结果和实验结果,研究三维修正对结果的影响,发现三维修正使结果更接近实验值,对纵摇运动影响更大,对艏部峰值加速度影响显著,同时指出计算与实验差异的误差来源。

2D + t 理论可用于研究滑行艇在迎浪中的动态垂直运动,数值结果与实验有较好一致性。发现非线性在接近共振频率时更强,高弗劳德数下共振波长更大,艉部三维效应是重要误差源。未来应进一步研究艉部三维效应及其他三维效应,将理论推广到非棱柱形滑行船体和高速半排水船。

5.完整程序

VVV

相关推荐
IT猿手6 小时前
基于强化学习的多算子差分进化路径规划算法QSMODE的机器人路径规划问题研究,提供MATLAB代码
算法·matlab·机器人
fie88899 小时前
基于MATLAB的转子动力学建模与仿真实现(含碰摩、不平衡激励)
开发语言·算法·matlab
机器学习之心10 小时前
基于GRU门控循环单元的轴承剩余寿命预测MATLAB实现
深度学习·matlab·gru·轴承剩余寿命预测
简简单单做算法10 小时前
基于FFT粗估计和LS最小二乘法精估计的正弦信号参数估计和检测matlab仿真
matlab·最小二乘法·参数估计·fft粗估计·ls最小二乘法
kaikaile199510 小时前
基于MATLAB的滑动轴承弹流润滑仿真程序实现
开发语言·matlab
Not Dr.Wang42220 小时前
FIR数字滤波器设计的两种实现
matlab
3GPP仿真实验室20 小时前
【MATLAB源码】CORDIC-QR :基于Cordic硬件级矩阵QR分解
开发语言·matlab·矩阵
民乐团扒谱机1 天前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Evand J1 天前
TDOA(到达时间差)的GDOP和CRLB计算的MATLAB例程,论文复现,附参考文献。GDOP:几何精度因子&CRLB:克拉美罗下界
开发语言·matlab·tdoa·crlb·gdop
机器学习之心HML1 天前
MATLAB豆渣发酵工艺优化 - 基于响应面法结合遗传算法
matlab