预训练语言模型(笔记)

笔记来源: Transformer、GPT、BERT,预训练语言模型的前世今生(目录) - B站-水论文的程序猿 - 博客园

预训练语言模型的发展并不是一蹴而就的,而是伴随着诸如词嵌入、序列到序列模型及 Attention 的发展而产生的。

一、从图像领域引入预训练思想

假设我们现在有一个任务:阿猫、阿狗、阿虎的图片各十张,然后让我们设计一个深度神经网络,通过该网络把它们三者的图片进行分类。

然而用30张图片设计一个深度神经网络基本是不可能的,因为深度学习一个弱项就是在训练阶段对于数据量的需求特别大。 但是我们可以利用网上现有的大量已做好分类标注的图片 。比如 ImageNet 中有 1400 万张图片,并且这些图片都已经做好了分类标注。

上述利用网络上现有图片的思想就是预训练的思想,具体做法就是:

  1. 通过 ImageNet 数据集我们训练出一个模型A
  2. 我们可以对模型 A 做出一部分改进得到模型 B(两种方法):
    1. 冻结:浅层参数使用模型 A 的参数,高层参数随机初始化,浅层参数一直不变,然后利用 30 张图片训练参数
    2. 微调:浅层参数使用模型 A 的参数,高层参数随机初始化,然后利用30 张图片训练参数,但是在这里浅层参数会随着任务的训练不断发生变化

预训练思想总结

对于一个具有少量数据的任务 A,我们可以先利用现有的大量数据搭建一个模型 A,再搭建一个模型B,模型B利用模型A的参数初始化后再用任务A的少量数据训练。模型B就是对应任务A的模型。

二、语言模型

语言模型通俗点讲就是**计算一个句子的概率。**也就是说,对于语言序列 𝑤1,𝑤2,⋯,𝑤𝑛,语言模型就是计算该序列的概率,即 𝑃(𝑤1,𝑤2,⋯,𝑤𝑛)。

下面通过两个实例具体了解上述所描述的意思:

  1. 假设给定两句话 "判断这个词的磁性" 和 "判断这个词的词性",语言模型会认为后者更自然。转化成数学语言也就是:𝑃(判断,这个,词,的,词性)>𝑃(判断,这个,词,的,磁性)
  2. 假设给定一句话做填空 "判断这个词的____",则问题就变成了给定前面的词,找出后面的一个词是什么,转化成数学语言就是:𝑃(词性|判断,这个,词,的)>𝑃(磁性|判断,这个,词,的)

通过上述两个实例,可以给出语言模型更加具体的描述:

1.给定一句由 𝑛 个词组成的句子 𝑊=𝑤1,𝑤2,⋯,𝑤𝑛,计算这个句子的概率 𝑃(𝑤1,𝑤2,⋯,𝑤𝑛)

2.计算根据上文计算下一个词的概率 𝑃(𝑤𝑛|𝑤1,𝑤2,⋯,𝑤𝑛−1)。

语言模型有两个分支,分别是统计语言模型和神经网络语言模型。

2.1统计语言模型

1.计算句子概率的公式:P(w1,w2,⋯,wn)=P(w1)P(w2|w1)P(w3|w1,w2)⋯p(wn|w1,w2,⋯,wn−1)=∏iP(wi|w1,w2,⋯,wi−1)

2.对于第二个问题可以用二元语言模型计算更简便。

二元语言模型的使用举例:

2.2 神经网络语言模型

神经网络语言模型则引入神经网络架构来估计单词的分布,并且通过词向量的距离衡量单词之间的相似度,因此,对于未登录单词,也可以通过相似词进行估计,进而避免出现数据稀疏问题

相关推荐
CoovallyAIHub9 分钟前
SBP-YOLO:面向嵌入式悬架的轻量实时模型,实现减速带与坑洼高精度检测
深度学习·算法·计算机视觉
算法打盹中14 分钟前
基于树莓派与Jetson Nano集群的实验边缘设备上视觉语言模型(VLMs)的性能评估与实践探索
人工智能·计算机视觉·语言模型·自然语言处理·树莓派·多模态·jetson nano
卿·静19 分钟前
Node.js对接即梦AI实现“千军万马”视频
前端·javascript·人工智能·后端·node.js
YangYang9YangYan20 分钟前
2025年金融专业人士职业认证发展路径分析
大数据·人工智能·金融
AIbase202421 分钟前
GEO优化服务:技术演进如何重塑搜索优化行业新范式
大数据·人工智能
摆烂z31 分钟前
ollama笔记
人工智能
连合机器人33 分钟前
城市脉搏中的“绿色卫士”:当智能科技邂逅城市清洁
人工智能·ai·设备租赁·连合直租·智能清洁专家·有鹿巡扫机器人
贾全36 分钟前
准备篇:搭建你的AI“炼丹炉“
人工智能·ai·vlm·多模态ai·vlm环境配置
CoovallyAIHub41 分钟前
医药、零件、饮料瓶盖……SuperSimpleNet让质检“即插即用”
深度学习·算法·计算机视觉