libtorch的c++,加载*.pth

一、转换模型为TorchScript

前提:python只保存了参数,没存结构

要在C++中使用libtorch(PyTorch的C++接口),读取和加载通过torch.save保存的模型( torch.save(pdn.state_dict()这种方式,只保存了参数,没存结构),需要转换模型为TorchScript。在python下实现。

复制代码
def get_pdn_small(out_channels=384, padding=False):
    pad_mult = 1 if padding else 0
    return nn.Sequential(
        nn.Conv2d(in_channels=3, out_channels=128, kernel_size=4,
                  padding=3 * pad_mult),
        nn.ReLU(inplace=True),
        nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),
        nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4,
                  padding=3 * pad_mult),
        nn.ReLU(inplace=True),
        nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),
        nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3,
                  padding=1 * pad_mult),
        nn.ReLU(inplace=True),
        nn.Conv2d(in_channels=256, out_channels=out_channels, kernel_size=4)
    )

def get_pdn_medium(out_channels=384, padding=False):
    pad_mult = 1 if padding else 0
    return nn.Sequential(
        nn.Conv2d(in_channels=3, out_channels=256, kernel_size=4,
                  padding=3 * pad_mult),
        nn.ReLU(inplace=True),
        nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),
        nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4,
                  padding=3 * pad_mult),
        nn.ReLU(inplace=True),
        nn.AvgPool2d(kernel_size=2, stride=2, padding=1 * pad_mult),
        nn.Conv2d(in_channels=512, out_channels=512, kernel_size=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3,
                  padding=1 * pad_mult),
        nn.ReLU(inplace=True),
        nn.Conv2d(in_channels=512, out_channels=out_channels, kernel_size=4),
        nn.ReLU(inplace=True),
        nn.Conv2d(in_channels=out_channels, out_channels=out_channels,
                  kernel_size=1)
    )

import torch

# 假设你有一个已训练的模型
model = get_pdn_small()

# 加载模型的state_dict
model.load_state_dict(torch.load('teacher_small.pth'))
model.eval()  # 设置模型为评估模式

# 将模型转化为TorchScript
scripted_model = torch.jit.script(model)
scripted_model.save('teacher_small.pt')

二、在C++中加载TorchScript模型

在C++中,你可以使用torch::jit::load来加载.pt文件,如下所示:

复制代码
#include <torch/script.h>  // One-stop header for loading TorchScript models
#include <iostream>
#include <memory>

int main() {
    // 加载TorchScript模型
    try {
        // 加载模型
                std::shared_ptr<torch::jit::Module> model = std::make_shared<torch::jit::Module>(torch::jit::load("teacher_small.pt"));


        std::cout << "Model loaded successfully!" << std::endl;

        // 你可以在这里使用模型进行推理,比如输入一个张量
        // 例如,如果输入是一个3x224x224的图像,你需要创建一个相应的Tensor
        torch::Tensor input = torch::randn({1, 3, 224, 224});  // 示例输入
        std::vector<torch::jit::IValue> inputs;
        inputs.push_back(input);

        // 执行模型推理
        at::Tensor output = model->forward(inputs).toTensor();
        std::cout << "Output tensor: " << output << std::endl;
    }
    catch (const c10::Error& e) {
        std::cerr << "Error loading the model: " << e.what() << std::endl;
        return -1;
    }
}
相关推荐
AndrewHZ5 分钟前
【图像处理基石】如何从动漫参考图中提取色彩风格?
图像处理·人工智能·opencv·pillow·聚类算法·色彩风格·色彩分布
阿里云大数据AI技术7 分钟前
PAI Physical AI Notebook详解3:基于仿真的导航模型训练
人工智能
2501_9411458524 分钟前
深度学习与计算机视觉在工业质检与智能检测系统中的创新应用研究
人工智能·深度学习·计算机视觉
Maynor99625 分钟前
突发!Grok 4.1 刚刚发布,情商拉满,国内免费使用!
人工智能
q***385125 分钟前
Spring Boot + Spring AI快速体验
人工智能·spring boot·spring
羊羊小栈26 分钟前
基于知识图谱(Neo4j)和大语言模型(LLM)的图检索增强(GraphRAG)的医疗健康知识问诊系统(vue+flask+AI算法)
人工智能·语言模型·毕业设计·知识图谱·neo4j·大作业
Mintopia1 小时前
Trae Coding - 「Excel 秒变海报」—— 上传 CSV,一句话生成可打印信息图。
前端·人工智能·trae
大千AI助手1 小时前
多叉树:核心概念、算法实现与全领域应用
人工智能·算法·决策树·机器学习··多叉树·大千ai助手
无妄无望1 小时前
ragflow代码学习切片方式(1)docling_parser.py
人工智能·python·学习
努力的光头强1 小时前
《智能体设计模式》从零基础入门到精通,看这一篇就够了!
大数据·人工智能·深度学习·microsoft·机器学习·设计模式·ai