使用 Apache Spark 进行大数据分析

使用 Apache Spark 进行大数据分析

环境准备

为了能够在本地环境中运行Spark程序,需要先完成环境搭建。确保已经安装了Jupyter Notebook和Apache Spark,并完成了两者之间的集成。

创建 SparkSession

在 Python 中使用 PySpark 时,通常会创建一个 SparkSession 对象作为入口点来与底层的 Spark 集群交互:

python 复制代码
from pyspark.sql import SparkSession

spark = SparkSession.builder \
    .appName("Example") \
    .getOrCreate()
加载数据集

可以利用内置函数读取不同格式的数据源,比如CSV文件:

python 复制代码
df = spark.read.csv('path/to/csv', header=True, inferSchema=True)
数据探索

一旦加载好数据框(DataFrame),就可以执行一些初步的操作来了解数据结构:

python 复制代码
# 显示前几条记录
df.show(5)

# 查看模式(schema)
df.printSchema()

# 统计描述性统计信息
df.describe().show()
转换与动作操作

对于DataFrame API来说,转换(transformations)定义了一个新的RDD/Dataset但是不会立即计算它;只有当遇到行动(actions)的时候才会触发真正的计算过程。常见的转换包括但不限于select(), filter(), groupBy()等方法;而collect(), count()则是典型的动作操作例子。

实现具体业务逻辑

根据具体的场景需求编写相应的ETL流程或者构建机器学习模型。例如,假设要找出某个字段的最大值所在行,则可如下实现:

python 复制代码
max_value_row = df.orderBy(df['column_name'].desc()).first()
print(max_value_row)
结果保存

最后不要忘记把最终的结果写出到外部存储系统中去,如HDFS、S3或其他数据库服务里边:

python 复制代码
df.write.mode('overwrite').parquet('output/path')

以上就是关于怎样借助于Spark来进行高效便捷的大规模数据分析的一个简单介绍。

相关推荐
墨理学AI2 小时前
一文学会一点python数据分析-小白原地进阶(mysql 安装 - mysql - python 数据分析 - 学习阶段梳理)
python·mysql·数据分析
databook3 小时前
像搭积木一样思考:数据科学中的“自下而上”之道
python·数据挖掘·数据分析
wang_yb3 小时前
像搭积木一样思考:数据科学中的“自下而上”之道
数据分析·databook
华农DrLai5 小时前
Spark SQL Catalyst 优化器详解
大数据·hive·sql·flink·spark
uesowys14 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
CodeToGym18 小时前
【Java 办公自动化】Apache POI 入门:手把手教你实现 Excel 导入与导出
java·apache·excel
鹏说大数据1 天前
Spark 和 Hive 的关系与区别
大数据·hive·spark
B站计算机毕业设计超人1 天前
计算机毕业设计Hadoop+Spark+Hive招聘推荐系统 招聘大数据分析 大数据毕业设计(源码+文档+PPT+ 讲解)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
B站计算机毕业设计超人1 天前
计算机毕业设计hadoop+spark+hive交通拥堵预测 交通流量预测 智慧城市交通大数据 交通客流量分析(源码+LW文档+PPT+讲解视频)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
码云数智-大飞1 天前
保姆级教程:零基础快速上手 Apache SeaTunnel(原 Waterdrop)
apache