爬虫案例-爬取某度文档利用飞桨ch_pp-ocrv3模型提高对图片的识别

文章目录

1.安装VC_redist.x64库和开启开发者模式

下载VC_redist.x64: 点击这里
在开发者选项,打开开发人员模式

2.第三方库的安装和paddlehub安装

python 复制代码
#以下是安装http请求的第三方库
pip install requests
#以下是安装处理文档的第三方库
pip install python-docx
#以下是大量处理维度数组与矩阵运算的第三方库
pip install numpy
#以下是图像处理和计算机视觉方面的很多通用算法的第三方库
pip install opencv-python
#以下是作为底层框架,支持模型的训练和推理GPU版。
pip install paddlepaddle-gpu
#以下是作为底层框架,支持模型的训练和推理CPU版。
pip install paddlepaddle
#以下是提供了模型的管理和一键预测功能
pip install paddleHub
#以下是安装ch_pp-ocrv3模型
hub install ch_pp-ocrv3

3、爬取某度文档的代码

python 复制代码
import requests
import os
from docx import Document
import cv2
import numpy as np
import paddlehub as hub

url = "https://wenku.baidu.com/gsearch/rec/pcviewdocrec2023?"
header = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36 Edg/131.0.0.0"}

data = {
    'sessionId': '3235255445-3246997752--',
    'docId': '3a283569cc84b9d528ea81c758f5f61fb7362802',
    'query': '什么是AI?什么是人工智能?',
    'recPositions': 'catalog,toplist'
}

request = requests.get(url,params=data,headers=header)
#print(request)
'''以下测试用的
#响应数据
print(request.text)
#响应头信息
#print(request.headers)
#状态码
#print(request.status_code)
'''

#爬取百度文档的图片
i = 0
print(request.text)
output_folder = r"C:/Users/zzx/Desktop/百度文档" + "/"
if not os.path.exists(output_folder):
    os.makedirs(output_folder)
for index in request.json()["data"]["catalogDoc"]:
    i+=1
    pic = index['pic']
    img_content = requests.get(pic,stream=True).content
    with open(output_folder + index["title"] +str(i) + '.jpg', mode='wb') as f:
        f.write(img_content)
    print(i,pic)
# 列出输出文件夹中的图片进行文字识别后转换成文档docx
for filename in os.listdir(output_folder):
    if filename.endswith('.jpg'):
        #print(filename)
        image_path = os.path.join(output_folder,filename)
        print(image_path)
        # 使用 numpy 的 fromfile 函数读取图像文件,可以用output_folder中文路径识别图片
        image_numpy = np.fromfile(image_path, dtype=np.uint8)
        # 使用 cv2.imdecode 函数解码图像
        image = cv2.imdecode(image_numpy, cv2.IMREAD_COLOR)
        print(image)
        #判断如果图片存在执行
        if image is not None:
            # 转换为灰度图像
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            # 转换为RGB格式(PaddleOCR需要)
            processed_img = cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
            # OCR识别,mkldnn加速仅在CPU下有效
            ocr = hub.Module(name="ch_pp-ocrv3", enable_mkldnn=True)
            results = ocr.recognize_text(images=[processed_img])
            #生成Word文档
            doc = Document()
            if results and len(results) > 0:
                text_data = results[0]['data']
                texts = [item['text'] for item in text_data]
                doc.add_paragraph('\n'.join(texts))
            # 保存生成的Word文档,使用不同的文件名
            doc.save(os.path.join(output_folder, f'{filename[:-4]}.docx'))

4、效果

下载的图片
>
通过ch_pp-ocrv3模型识别文字,效果相当好

相关推荐
年年测试1 分钟前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘
唐兴通个人1 小时前
人工智能Deepseek医药AI培训师培训讲师唐兴通讲课课程纲要
大数据·人工智能
共绩算力2 小时前
Llama 4 Maverick Scout 多模态MoE新里程碑
人工智能·llama·共绩算力
DashVector2 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会2 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
音视频牛哥2 小时前
从协议规范和使用场景探讨为什么SmartMediaKit没有支持DASH
人工智能·音视频·大牛直播sdk·dash·dash还是rtmp·dash还是rtsp·dash还是hls
赞奇科技Xsuperzone3 小时前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia
音视频牛哥3 小时前
SmartMediaKit:如何让智能系统早人一步“跟上现实”的时间架构--从实时流媒体到系统智能的演进
人工智能·计算机视觉·音视频·音视频开发·具身智能·十五五规划具身智能·smartmediakit
喜欢吃豆3 小时前
OpenAI Agent 工具全面开发者指南——从 RAG 到 Computer Use —— 深入解析全新 Responses API
人工智能·microsoft·自然语言处理·大模型
音视频牛哥4 小时前
超清≠清晰:视频系统里的分辨率陷阱与秩序真相
人工智能·机器学习·计算机视觉·音视频·大牛直播sdk·rtsp播放器rtmp播放器·smartmediakit