四模型消融实验!DCS-CNN-BiLSTM-Attention系列四模型多变量时序预测

四模型消融实验!DCS-CNN-BiLSTM-Attention系列四模型多变量时序预测

目录

预测效果







基本介绍

基于DCS-CNN-BiLSTM-Attention、CNN-BiLSTM-Attention、DCS-CNN-BiLSTM、CNN-BiLSTM四模型多变量时序预测一键对比(仅运行一个main即可)

Matlab代码,每个模型的预测结果和组合对比结果都有!

1.无需繁琐步骤,只需要运行一个main即可一键出所有图像。

2.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!

3.优化参数为:隐藏层节点数,学习率,正则化系数。

4.差异化创意搜索(DCS)算法是一种极具创新的元启发式优化方法,该方法采用差异化知识获取和创造性现实主义策略来解决复杂的优化问题。

5.运行环境要求MATLAB版本为2023b及其以上。

评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多

代码中文注释清晰,质量极高,赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白

程序设计

  • 完整代码私信回复四模型消融实验!DCS-CNN-BiLSTM-Attention系列四模型多变量时序预测
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('数据集.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数
kim = 2;                       % 延时步长(前面多行历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
nim = size(result, 2) - 1;     % 原始数据的特征是数目

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1 + zim, 1: end - 1)', 1, ...
        (kim + zim) * nim), result(i + kim + zim - 1, end)];
end

%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征长度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, -1, 1);%将训练集和测试集的数据调整到0到1之间
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, -1, 1);% 对测试集数据做归一化
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(p_train, f_, 1, 1, M));
p_test  =  double(reshape(p_test , f_, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test )';

%%  数据格式转换
for i = 1 : M
    Lp_train{i, 1} = p_train(:, :, 1, i);
end

for i = 1 : N
    Lp_test{i, 1}  = p_test( :, :, 1, i);
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
漂亮_大男孩10 小时前
深度学习|表示学习|Instance Normalization 全面总结|26
人工智能·深度学习·神经网络·学习·cnn
DB_UP12 小时前
动手学深度学习---深层神经网络
人工智能·深度学习·神经网络
AuGuSt_8118 小时前
N-Beats:一种用于时间序列预测的纯前馈神经网络模型
人工智能·深度学习·神经网络
机器学习之心21 小时前
CNN-BiLSTM卷积神经网络双向长短期记忆神经网络多变量多步预测,光伏功率预测
神经网络·cnn·卷积神经网络·cnn-bilstm·双向长短期记忆神经网络·光伏功率预测
万事可爱^1 天前
【深度学习】突破数据局限:少样本图像数据的特征提取实战攻略
图像处理·人工智能·深度学习·神经网络·计算机视觉
漂亮_大男孩1 天前
深度学习|表示学习|CNN中的Layer Normalization | 25
人工智能·深度学习·神经网络·学习·cnn
是十一月末1 天前
深度学习之神经网络框架搭建及模型优化
人工智能·pytorch·python·深度学习·神经网络
goomind2 天前
深度卷积神经网络实战海洋动物图像识别
深度学习·神经网络·yolo·计算机视觉·cnn·pyqt5·海洋动物识别
_zwy2 天前
【蓝耘元生代智算云平台】一键部署 DeepSeek人工智能模型
人工智能·深度学习·神经网络·语言模型