使用verilog 实现cordic 算法 ---- 向量模式

分享个人写的 coridic 向量模式的RTL:

cordic 算法向量模式主要作用是求出向量的模值以及 arctan (x/y) 值;

首先从仿真图去了解cordic 算法向量模式的 作用,不同数据测试;

后续拓展:将旋转模式和向量模式在同一个module封装使用起来。

1 . 展示仿真图:

a.下面是改变 x,y坐标得出的 arctan(y/x)值,以及这个坐标构成向量的模值

b.测试 tan1~10...

c.测试 tan1 、 tan0.5 、tan0.33 ...

d. 测试 随机产生的 x y 值 ,利用 random函数

2 . RTL

c 复制代码
module test_my_cordic_vec(

	input i_clk,
	input i_rst

	);


reg signed	[31:0]	r_angle ;
reg					r_valid ;
reg signed  [31:0]  r_x     ;
reg signed  [31:0]  r_y     ;

wire				w_ready;

(*dont_touch = "true"*)
my_cordic_vec inst_my_cordic
(
			.i_clk             (i_clk   ),
			.i_rst             (i_rst   ),
			.i_iteration_count (16      ), //设置迭代次数 ,最大16次
			.i_setx            (r_x     ),
			.i_sety            (r_y     ),
			.i_set_angle       (0       ),
			.i_valid           (r_valid ),
			.o_xmod            (        ),
			.o_angle           (        ),
			.o_valid           (        ),
			.o_ready           (w_ready )
);

//测试 45°
/* always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_x <= 65536;
		r_y <= 65536;
	end else if (w_ready && r_valid) begin
		r_x <= r_x + 65536;
		r_y <= r_y + 65536;		
	end else begin
		r_x <= r_x;
		r_y <= r_y;
	end
end */

//测试 tan1 ~ 10 ~ 
/*  always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_x <= 65536;
		r_y <= 65536;
	end else if (w_ready && r_valid) begin
		r_x <= 65536;
		r_y <= r_y + 65536;		
	end else begin
		r_x <= r_x;
		r_y <= r_y;
	end
end  */

/*  always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_x <= 65536;
		r_y <= 65536;
	end else if (w_ready && r_valid) begin
		r_x <= r_x + 65536;
		r_y <= 65536;		
	end else begin
		r_x <= r_x;
		r_y <= r_y;
	end
end  */

// 测试 随机产生的 x、 y值 
 always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_x <= 65536;
		r_y <= 65536;
	end else if (w_ready && r_valid) begin
		r_x <= {$random} % 3284721; // 取 0~50 以内的数值
		r_y <= {$random} % 3284721;		
	end else begin
		r_x <= r_x;
		r_y <= r_y;
	end
end 

always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) 
		r_valid <= 0;
	else if (w_ready && r_valid)
		r_valid <= 0;
	else if  (w_ready)
		r_valid <= 1;			
	else 
		r_valid <= 0;	
end

endmodule
c 复制代码
//运算公式:
//x(i+1) = x(i) + y(i) * di * 2^(-i)
//y(i+1) = y(i) - x(i) * di * 2^(-i)
//z(i+1) = z(i) + arctan(di * 2^(-i))
//author : 技术小白爱FPGA
//备注:cordic 算法,向量模式,迭代次数固定 16次,可以自己任意设置,最大16次


module my_cordic_vec (

	input                    i_clk                   ,
	input                    i_rst                   ,
	input [4:0]              i_iteration_count       ,
      
	input  signed [31:0]     i_setx                  ,
	input  signed [31:0]     i_sety                  ,
	input  signed [31:0]     i_set_angle             ,
	input                    i_valid                 ,

	output   signed [63:0]   o_xmod                  ,
	output   signed [31:0]   o_angle                 ,
	output                   o_valid                 ,
	output                   o_ready    

);

wire signed [31:0]  K_p = 39796    ;
wire signed	[31:0]	r_arctan [0:15];
wire				r_di           ;

reg signed	[31:0]	r_setx         ;
reg signed	[31:0]	r_sety         ;
reg					ro_valid       ;
reg					ro_ready       ;
reg   signed [63:0] ro_xmod        ;
reg   signed [31:0] ro_angle       ;
reg	[4:0]			r_count        ;
reg					r_run_cal      ;
reg signed	[31:0]	r_angle        ;

//存储 arctan 值,整体表示-----扩大2^16倍数,相当于将小数点定在16bit位置上
assign	r_arctan[0] = 2949120      ;
assign	r_arctan[1] = 1740967      ;
assign	r_arctan[2] = 919879       ;
assign	r_arctan[3] = 466945       ;
assign	r_arctan[4] = 234378       ;
assign	r_arctan[5] = 117303       ;
assign	r_arctan[6] = 58666        ;
assign	r_arctan[7] = 29334        ;
assign	r_arctan[8] = 14667        ;
assign	r_arctan[9] = 7333         ;
assign	r_arctan[10]= 3666         ;
assign	r_arctan[11]= 1833         ;
assign	r_arctan[12]= 916          ;
assign	r_arctan[13]= 458          ;
assign	r_arctan[14]= 229          ;
assign	r_arctan[15]= 114          ;


//判断旋转的方向
assign r_di = (r_sety > 0 && r_run_cal)?1:0;

assign o_xmod  = ro_xmod ;
assign o_angle = ro_angle;
assign o_ready = ro_ready;
assign o_valid = ro_valid;


//运算迭代  >>>  --- > 算数右移,不改变符号位; 如果使用 >> ,移位,高位补0;
always @ (posedge i_clk) 
begin
	if (i_valid) begin
		r_setx <= i_setx;
		r_sety <= i_sety;
	end
	else if (r_run_cal && r_di ) begin
		r_setx <= r_setx + (r_sety >>> r_count);
		r_sety <= r_sety - (r_setx >>> r_count);		
	end else if (r_run_cal && !r_di) begin
		r_setx <= r_setx - (r_sety >>> r_count);
		r_sety <= r_sety + (r_setx >>> r_count);	
	end
end

//迭代运算次数
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_count <= 0;
	end else if (r_count == i_iteration_count -1) begin
		r_count <= 0;
	end
	else if (r_run_cal) begin
		r_count <= r_count + 1;
	end
end

always @ (posedge i_clk or negedge i_rst)
begin
	if (i_rst)
		r_angle <= 0;
	else if (i_valid)
		r_angle <= i_set_angle;		
	else if (r_di && r_run_cal)
		r_angle <= r_angle + r_arctan[r_count];
	else if (!r_di && r_run_cal)
		r_angle <= r_angle - r_arctan[r_count];
	else 
		r_angle <= r_angle;
end

//迭代运算标志
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		r_run_cal <= 0;
	end
	else if (r_count == i_iteration_count -1) begin
		r_run_cal <= 0;	
	end
	else if(i_valid) begin
		r_run_cal <= 1;		
	end
	else begin
		r_run_cal <= r_run_cal;	
	end
end

always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		ro_ready <= 1;
	end
	else if (i_valid || r_run_cal) begin
		ro_ready <= 0;		
	end else begin
		ro_ready <= 1;
	end
end

//最终输出的 sin cos valid 信号
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) 
		ro_valid <= 0;
	else if (r_count == i_iteration_count -1)
		ro_valid <= 1;		
	else 
		ro_valid <= 0;	
end

//最终输出的 xmod angle 值
always @ (posedge i_clk or posedge i_rst) 
begin
	if (i_rst) begin
		ro_xmod  <= 0;
		ro_angle <= 0;
	end
	else if (r_count == i_iteration_count -1) begin
		ro_xmod  <= r_setx * K_p;
		ro_angle <= r_angle;		
	end
end

endmodule
c 复制代码
module tb_cordic();

reg i_clk;
reg i_rst;

initial begin 
	i_clk = 0;
	i_rst = 1;
	#100
	@(posedge i_clk)
	i_rst =0;
end

always #10 i_clk = ~i_clk;

test_my_cordic_vec inst_test_my_cordic (.i_clk(i_clk), .i_rst(i_rst));

endmodule
相关推荐
@我漫长的孤独流浪9 分钟前
最短路与拓扑(2)
数据结构·c++·算法
tiantianuser43 分钟前
NVMe简介1
fpga开发·nvme·可编程逻辑·verilogy
<但凡.1 小时前
C++修炼:多态
开发语言·c++·算法
买了一束花1 小时前
数据预处理之数据平滑处理详解
开发语言·人工智能·算法·matlab
YuforiaCode1 小时前
LeetCode 热题 100 35.搜索插入位置
数据结构·算法·leetcode
FPGA_ADDA2 小时前
基于RFSOC ZU28DR+DSP 6U VPX处理板
fpga开发·dsp·rfsoc28dr·zu28dr·射频采集
Jasmine_llq3 小时前
《P4391 [BalticOI 2009] Radio Transmission 无线传输 题解》
算法·字符串·substr
水水沝淼㵘3 小时前
嵌入式开发学习日志(数据结构--单链表)Day20
c语言·开发语言·数据结构·学习·算法
算法给的安全感3 小时前
bfs-最小步数问题
java·算法·宽度优先
灏瀚星空3 小时前
地磁-惯性-视觉融合制导系统设计:现代空战导航的抗干扰解决方案
图像处理·人工智能·python·深度学习·算法·机器学习·信息与通信