作者:来自 Elastic Jeffrey Rengifo

Ollama API 与 OpenAI API 兼容,因此将 Ollama 与 Elasticsearch 集成非常容易。
在本文中,我们将学习如何使用 Ollama 将本地模型连接到 Elasticsearch 推理模型,然后使用 Playground 向文档提出问题。
Elasticsearch 允许用户使用开放推理 API(Inference API)连接到 LLMs,支持 Amazon Bedrock、Cohere、Google AI、Azure AI Studio、HuggingFace 等提供商(作为服务)等。
Ollama 是一个工具,允许你使用自己的基础设施(本地机器/服务器)下载和执行 LLM 模型。你可以在此处找到与 Ollama 兼容的可用型号列表。
如果你想要托管和测试不同的开源模型,而又不必担心每个模型需要以不同的方式设置,或者如何创建 API 来访问模型功能,那么 Ollama 是一个不错的选择,因为 Ollama 会处理所有事情。
由于 Ollama API 与 OpenAI API 兼容,我们可以轻松集成推理模型并使用 Playground 创建 RAG 应用程序。
更多阅读,请参阅 "Elasticsearch:在 Elastic 中玩转 DeepSeek R1 来实现 RAG 应用"。
先决条件
- Elasticsearch 8.17
- Kibana 8.17
- Python
步骤
- 设置 Ollama LLM 服务器
- 创建映射
- 索引数据
- 使用 Playground 提问
设置 Ollama LLM 服务器
我们将设置一个 LLM 服务器,并使用 Ollama 将其连接到我们的 Playground 实例。我们需要:
- 下载并运行 Ollama。
- 使用 ngrok 通过互联网访问托管 Ollama 的本地 Web 服务器
下载并运行 Ollama
要使用Ollama,我们首先需要下载它。 Ollama 支持 Linux、Windows 和 macOS,因此只需在此处下载与你的操作系统兼容的 Ollama 版本即可。一旦安装了 Ollama,我们就可以从这个受支持的 LLM 列表中选择一个模型。在此示例中,我们将使用 llama3.2 模型,这是一个通用的多语言模型。在安装过程中,你将启用 Ollama 的命令行工具。下载完成后,你可以运行以下行:
ollama pull llama3.2
这将输出:
pulling manifest
pulling dde5aa3fc5ff... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 2.0 GB
pulling 966de95ca8a6... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 1.4 KB
pulling fcc5a6bec9da... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 7.7 KB
pulling a70ff7e570d9... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 6.0 KB
pulling 56bb8bd477a5... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 96 B
pulling 34bb5ab01051... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 561 B
verifying sha256 digest
writing manifest
success
安装后,你可以使用以下命令进行测试:
ollama run llama3.2
我们来问一个问题:

在模型运行时,Ollama 启用默认在端口 "11434" 上运行的 API。让我们按照官方文档向该 API 发出请求:
curl http://localhost:11434/api/generate -d '{
"model": "llama3.2",
"prompt": "What is the capital of France?"
}'
这是我们得到的答案:
{"model":"llama3.2","created_at":"2024-11-28T21:48:42.152817532Z","response":"The","done":false}
{"model":"llama3.2","created_at":"2024-11-28T21:48:42.251884485Z","response":" capital","done":false}
{"model":"llama3.2","created_at":"2024-11-28T21:48:42.347365913Z","response":" of","done":false}
{"model":"llama3.2","created_at":"2024-11-28T21:48:42.446837322Z","response":" France","done":false}
{"model":"llama3.2","created_at":"2024-11-28T21:48:42.542367394Z","response":" is","done":false}
{"model":"llama3.2","created_at":"2024-11-28T21:48:42.644580384Z","response":" Paris","done":false}
{"model":"llama3.2","created_at":"2024-11-28T21:48:42.739865362Z","response":".","done":false}
{"model":"llama3.2","created_at":"2024-11-28T21:48:42.834347518Z","response":"","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,3923,374,279,6864,315,9822,30,128009,128006,78191,128007,271,791,6864,315,9822,374,12366,13],"total_duration":6948567145,"load_duration":4386106503,"prompt_eval_count":32,"prompt_eval_duration":1872000000,"eval_count":8,"eval_duration":684000000}
请注意,此端点的具体响应是流式传输。
使用 ngrok 将端点暴露给互联网
由于我们的端点在本地环境中工作,因此无法通过互联网从另一个点(如我们的 Elastic Cloud 实例)访问它。 ngrok 允许我们公开提供公共 IP 的端口。在 ngrok 中创建一个帐户并按照官方设置指南进行操作。
注:这个有点类似在中国提供的 "花生壳" 功能。
一旦安装并配置了 ngrok 代理,我们就可以使用以下命令公开 Ollama 端口:
ngrok http 11434 --host-header="localhost:11434"
注意:标头 --host-header="localhost:11434" 保证请求中的 "Host" 标头与 "localhost:11434" 匹配
执行此命令将返回一个公共链接,只要 ngrok 和 Ollama 服务器在本地运行,该链接就会起作用。
Session Status online
Account xxxx@yourEmailProvider.com (Plan: Free)
Version 3.18.4
Region United States (us)
Latency 561ms
Web Interface http://127.0.0.1:4040
Forwarding https://your-ngrok-url.ngrok-free.app -> http://localhost:11434
Connections ttl opn rt1 rt5 p50 p90
0 0 0.00 0.00 0.00 0.00 ```
在 "Forwarding" 中我们可以看到 ngrok 生成了一个 URL。保存以供以后使用。
让我们再次尝试向端点发出 HTTP 请求,现在使用 ngrok 生成的 URL:
curl https://your-ngrok-endpoint.ngrok-free.app/api/generate -d '{
"model": "llama3.2",
"prompt": "What is the capital of France?"
}'
响应应与前一个类似。
创建映射
ELSER 端点
对于此示例,我们将使用 Elasticsearch 推理 API 创建一个推理端点。此外,我们将使用 ELSER 来生成嵌入。
PUT _inference/sparse_embedding/medicines-inference
{
"service": "elasticsearch",
"service_settings": {
"num_allocations": 1,
"num_threads": 1,
"model_id": ".elser_model_2_linux-x86_64"
}
}
在这个例子中,假设你有一家药店,销售两种类型的药品:
- 需要处方的药物。
- 不需要处方的药物。
该信息将包含在每种药物的描述字段中。
LLM 必须解释这个字段,因此我们将使用以下数据映射:
PUT medicines
{
"mappings": {
"properties": {
"name": {
"type": "text",
"copy_to": "semantic_field"
},
"semantic_field": {
"type": "semantic_text",
"inference_id": "medicines-inference"
},
"text_description": {
"type": "text",
"copy_to": "semantic_field"
}
}
}
}
字段 text_description 将存储描述的纯文本,而 semantic_field(一种 semantic_text 字段类型)将存储由 ELSER 生成的嵌入。
copy_to 属性将把字段 name 和 text_description 中的内容复制到语义字段中,以便生成这些字段的嵌入。
索引数据
现在,让我们使用 _bulk API 对数据进行索引。
POST _bulk
{"index":{"_index":"medicines"}}
{"id":1,"name":"Paracetamol","text_description":"An analgesic and antipyretic that does NOT require a prescription."}
{"index":{"_index":"medicines"}}
{"id":2,"name":"Ibuprofen","text_description":"A nonsteroidal anti-inflammatory drug (NSAID) available WITHOUT a prescription."}
{"index":{"_index":"medicines"}}
{"id":3,"name":"Amoxicillin","text_description":"An antibiotic that requires a prescription."}
{"index":{"_index":"medicines"}}
{"id":4,"name":"Lorazepam","text_description":"An anxiolytic medication that strictly requires a prescription."}
{"index":{"_index":"medicines"}}
{"id":5,"name":"Omeprazole","text_description":"A medication for stomach acidity that does NOT require a prescription."}
{"index":{"_index":"medicines"}}
{"id":6,"name":"Insulin","text_description":"A hormone used in diabetes treatment that requires a prescription."}
{"index":{"_index":"medicines"}}
{"id":7,"name":"Cold Medicine","text_description":"A compound formula to relieve flu symptoms available WITHOUT a prescription."}
{"index":{"_index":"medicines"}}
{"id":8,"name":"Clonazepam","text_description":"An antiepileptic medication that requires a prescription."}
{"index":{"_index":"medicines"}}
{"id":9,"name":"Vitamin C","text_description":"A dietary supplement that does NOT require a prescription."}
{"index":{"_index":"medicines"}}
{"id":10,"name":"Metformin","text_description":"A medication used for type 2 diabetes that requires a prescription."}
响应:
{
"errors": false,
"took": 34732020848,
"items": [
{
"index": {
"_index": "medicines",
"_id": "mYoeMpQBF7lnCNFTfdn2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 2,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1,
"status": 201
}
},
{
"index": {
"_index": "medicines",
"_id": "mooeMpQBF7lnCNFTfdn2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 2,
"failed": 0
},
"_seq_no": 1,
"_primary_term": 1,
"status": 201
}
},
{
"index": {
"_index": "medicines",
"_id": "m4oeMpQBF7lnCNFTfdn2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 2,
"failed": 0
},
"_seq_no": 2,
"_primary_term": 1,
"status": 201
}
},
{
"index": {
"_index": "medicines",
"_id": "nIoeMpQBF7lnCNFTfdn2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 2,
"failed": 0
},
"_seq_no": 3,
"_primary_term": 1,
"status": 201
}
},
{
"index": {
"_index": "medicines",
"_id": "nYoeMpQBF7lnCNFTfdn2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 2,
"failed": 0
},
"_seq_no": 4,
"_primary_term": 1,
"status": 201
}
},
{
"index": {
"_index": "medicines",
"_id": "nooeMpQBF7lnCNFTfdn2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 2,
"failed": 0
},
"_seq_no": 5,
"_primary_term": 1,
"status": 201
}
},
{
"index": {
"_index": "medicines",
"_id": "n4oeMpQBF7lnCNFTfdn2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 2,
"failed": 0
},
"_seq_no": 6,
"_primary_term": 1,
"status": 201
}
},
{
"index": {
"_index": "medicines",
"_id": "oIoeMpQBF7lnCNFTfdn2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 2,
"failed": 0
},
"_seq_no": 7,
"_primary_term": 1,
"status": 201
}
},
{
"index": {
"_index": "medicines",
"_id": "oYoeMpQBF7lnCNFTfdn2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 2,
"failed": 0
},
"_seq_no": 8,
"_primary_term": 1,
"status": 201
}
},
{
"index": {
"_index": "medicines",
"_id": "oooeMpQBF7lnCNFTfdn2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 2,
"failed": 0
},
"_seq_no": 9,
"_primary_term": 1,
"status": 201
}
}
]
}
使用 Playground 提问
Playground 是一个 Kibana 工具,允许你使用 Elasticsearch 索引和 LLM 提供程序快速创建 RAG 系统。你可以阅读本文以了解更多信息。
将本地 LLM 连接到 Playground
我们首先需要创建一个使用我们刚刚创建的公共 URL 的连接器。在 Kibana 中,转到 Search>Playground,然后单击 "Connect to an LLM"。

此操作将显示 Kibana 界面左侧的菜单。在那里,点击 "OpenAI"。

我们现在可以开始配置 OpenAI 连接器。
转到 "Connector settings",对于 OpenAI 提供商,选择 "Other (OpenAI Compatible Service)":

现在,让我们配置其他字段。在这个例子中,我们将我们的模型命名为 "medicines-llm"。在 URL 字段中,使用 ngrok 生成的 URL(/v1/chat/completions)。在 "Default model" 字段中,选择 "llama3.2"。我们不会使用 API 密钥,因此只需输入任何随机文本即可继续:
点击 "Save",点击 "Add data sources" 添加索引药品:


太棒了!我们现在可以使用在本地运行的 LLM 作为 RAG 引擎来访问 Playground。

在测试之前,让我们向代理添加更具体的指令,并将发送给模型的文档数量增加到 10,以便答案具有尽可能多的可用文档。上下文字段将是 semantic_field,它包括药物的名称和描述,这要归功于 copy_to 属性。

现在让我们问一个问题:Can I buy Clonazepam without a prescription? 看看会发生什么:
https://drive.google.com/file/d/1WOg9yJ2Vs5ugmXk9_K9giZJypB8jbxuN/view?usp=drive_link
正如我们所料,我们得到了正确的答案。
后续步骤
下一步是创建你自己的应用程序! Playground 提供了一个 Python 代码脚本,你可以在自己的机器上运行它并自定义它以满足你的需要。例如,通过将其置于 FastAPI 服务器后面来创建由你的 UI 使用的 QA 药品聊天机器人。
你可以通过点击 Playground 右上角的 View code按钮找到此代码:

并且你使用 Endpoints & API keys生成代码中所需的 ES_API_KEY 环境变量。
对于此特定示例,代码如下:
## Install the required packages
## pip install -qU elasticsearch openai
import os
from elasticsearch import Elasticsearch
from openai import OpenAI
es_client = Elasticsearch(
"https://your-deployment.us-central1.gcp.cloud.es.io:443",
api_key=os.environ["ES_API_KEY"]
)
openai_client = OpenAI(
api_key=os.environ["OPENAI_API_KEY"],
)
index_source_fields = {
"medicines": [
"semantic_field"
]
}
def get_elasticsearch_results():
es_query = {
"retriever": {
"standard": {
"query": {
"nested": {
"path": "semantic_field.inference.chunks",
"query": {
"sparse_vector": {
"inference_id": "medicines-inference",
"field": "semantic_field.inference.chunks.embeddings",
"query": query
}
},
"inner_hits": {
"size": 2,
"name": "medicines.semantic_field",
"_source": [
"semantic_field.inference.chunks.text"
]
}
}
}
}
},
"size": 3
}
result = es_client.search(index="medicines", body=es_query)
return result["hits"]["hits"]
def create_openai_prompt(results):
context = ""
for hit in results:
inner_hit_path = f"{hit['_index']}.{index_source_fields.get(hit['_index'])[0]}"
## For semantic_text matches, we need to extract the text from the inner_hits
if 'inner_hits' in hit and inner_hit_path in hit['inner_hits']:
context += '\n --- \n'.join(inner_hit['_source']['text'] for inner_hit in hit['inner_hits'][inner_hit_path]['hits']['hits'])
else:
source_field = index_source_fields.get(hit["_index"])[0]
hit_context = hit["_source"][source_field]
context += f"{hit_context}\n"
prompt = f"""
Instructions:
- You are an assistant specializing in answering questions about the sale of medicines.
- Answer questions truthfully and factually using only the context presented.
- If you don't know the answer, just say that you don't know, don't make up an answer.
- You must always cite the document where the answer was extracted using inline academic citation style [], using the position.
- Use markdown format for code examples.
- You are correct, factual, precise, and reliable.
Context:
{context}
"""
return prompt
def generate_openai_completion(user_prompt, question):
response = openai_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": user_prompt},
{"role": "user", "content": question},
]
)
return response.choices[0].message.content
if __name__ == "__main__":
question = "my question"
elasticsearch_results = get_elasticsearch_results()
context_prompt = create_openai_prompt(elasticsearch_results)
openai_completion = generate_openai_completion(context_prompt, question)
print(openai_completion)
为了使其与 Ollama 一起工作,你必须更改 OpenAI 客户端以连接到 Ollama 服务器而不是 OpenAI 服务器。你可以在此处找到 OpenAI 示例和兼容端点的完整列表。
openai_client = OpenAI(
# you can use http://localhost:11434/v1/ if running this code locally.
base_url='https://your-ngrok-url.ngrok-free.app/v1/',
# required but ignored
api_key='ollama',
)
并且在调用完成方法时将模型更改为 llama3.2:
def generate_openai_completion(user_prompt, question):
response = openai_client.chat.completions.create(
model="llama3.2",
messages=[
{"role": "system", "content": user_prompt},
{"role": "user", "content": question},
]
)
return response.choices[0].message.content
让我们添加一个问题:***an I buy Clonazepam without a prescription?***对于 Elasticsearch 查询:
def get_elasticsearch_results():
es_query = {
"retriever": {
"standard": {
"query": {
"nested": {
"path": "semantic_field.inference.chunks",
"query": {
"sparse_vector": {
"inference_id": "medicines-inference",
"field": "semantic_field.inference.chunks.embeddings",
"query": "Can I buy Clonazepam without a prescription?"
}
},
"inner_hits": {
"size": 2,
"name": "medicines.semantic_field",
"_source": [
"semantic_field.inference.chunks.text"
]
}
}
}
}
},
"size": 3
}
result = es_client.search(index="medicines", body=es_query)
return result["hits"]["hits"]
另外,在完成调用时还会打印一些内容,这样我们就可以确认我们正在将 Elasticsearch 结果作为问题上下文的一部分发送:
if __name__ == "__main__":
question = "Can I buy Clonazepam without a prescription?"
elasticsearch_results = get_elasticsearch_results()
context_prompt = create_openai_prompt(elasticsearch_results)
print("========== Context Prompt START ==========")
print(context_prompt)
print("========== Context Prompt END ==========")
print("========== Ollama Completion START ==========")
openai_completion = generate_openai_completion(context_prompt, question)
print(openai_completion)
print("========== Ollama Completion END ==========")
现在让我们运行命令:
pip install -qU elasticsearch openai
python main.py
你应该看到类似这样的内容:
========== Context Prompt START ==========
Instructions:
- You are an assistant specializing in answering questions about the sale of medicines.
- Answer questions truthfully and factually using only the context presented.
- If you don't know the answer, just say that you don't know, don't make up an answer.
- You must always cite the document where the answer was extracted using inline academic citation style [], using the position.
- Use markdown format for code examples.
- You are correct, factual, precise, and reliable.
Context:
Clonazepam
---
An antiepileptic medication that requires a prescription.A nonsteroidal anti-inflammatory drug (NSAID) available WITHOUT a prescription.
---
IbuprofenAn anxiolytic medication that strictly requires a prescription.
---
Lorazepam
========== Context Prompt END ==========
========== Ollama Completion START ==========
No, you cannot buy Clonazepam over-the-counter (OTC) without a prescription [1]. It is classified as a controlled substance in the United States due to its potential for dependence and abuse. Therefore, it can only be obtained from a licensed healthcare provider who will issue a prescription for this medication.
========== Ollama Completion END ==========
结论
在本文中,我们可以看到,当将 Ollama 等工具与 Elasticsearch 推理 API 和 Playground 结合使用时,它们的强大功能和多功能性。
经过几个简单的步骤,我们就得到了一个可以运行的 RAG 应用程序,该应用程序可以使用 LLM 在我们自己的基础设施中免费运行的聊天功能。这还使我们能够更好地控制资源和敏感信息,同时还使我们能够访问用于不同任务的各种模型。
想要获得 Elastic 认证吗?了解下一期 Elasticsearch 工程师培训何时举行!
Elasticsearch 包含许多新功能,可帮助你为你的用例构建最佳的搜索解决方案。深入了解我们的示例笔记本以了解更多信息,开始免费云试用,或立即在本地机器上试用 Elastic。