机器学习实战(4):逻辑回归——分类问题的基础

第4集:逻辑回归------分类问题的基础

在机器学习中,逻辑回归(Logistic Regression) 是解决分类问题的经典算法之一。尽管名字中有"回归",但它实际上是一种分类模型,广泛应用于二分类任务(如垃圾邮件检测、疾病诊断等)。今天我们将深入探讨逻辑回归的数学原理,并通过实践部分使用 Iris 数据集 进行二分类任务。


逻辑回归的数学原理

什么是逻辑回归?

逻辑回归的核心思想是将线性回归的输出映射到 [0, 1] 区间,从而表示概率值。其公式如下:
P ( y = 1 ∣ x ) = 1 1 + e − ( w 0 + w 1 x 1 + w 2 x 2 + . . . + w p x p ) P(y=1|x) = \frac{1}{1 + e^{-(w_0 + w_1x_1 + w_2x_2 + ... + w_px_p)}} P(y=1∣x)=1+e−(w0+w1x1+w2x2+...+wpxp)1

其中:
P ( y = 1 ∣ x ) 表示给定输入特征 x 时,样本属于类别 1 的概率。 P(y=1|x) 表示给定输入特征 x 时,样本属于类别 1 的概率。 P(y=1∣x)表示给定输入特征x时,样本属于类别1的概率。
w 0 , w 1 , . . . , w p 是模型的参数。 w_0, w_1, ..., w_p 是模型的参数。 w0,w1,...,wp是模型的参数。
e 是自然对数的底数。 e 是自然对数的底数。 e是自然对数的底数。

最终预测结果为:
y ^ = { 1 if P ( y = 1 ∣ x ) ≥ 0.5 0 otherwise \hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) \geq 0.5 \\ 0 & \text{otherwise} \end{cases} y^={10if P(y=1∣x)≥0.5otherwise


Sigmoid 函数的作用

逻辑回归的关键在于 Sigmoid 函数 ,它将线性回归的输出压缩到 [0, 1] 范围内。Sigmoid 函数的公式为:
σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+e−z1

其中 z = w 0 + w 1 x 1 + w 2 x 2 + . . . + w p x p z = w_0 + w_1x_1 + w_2x_2 + ... + w_px_p z=w0+w1x1+w2x2+...+wpxp。

图1:Sigmoid 函数图像

(图片描述:当 z 趋近于负无穷时,函数值趋近于 0;当 z 趋近于正无穷时,函数值趋近于 1。)

Sigmoid 函数的作用是将线性回归的连续输出转化为概率值,便于进行分类决策。


决策边界与概率输出

决策边界

逻辑回归通过找到一个超平面(在二维空间中是一条直线),将数据分为两类。决策边界由以下方程定义:
w 0 + w 1 x 1 + w 2 x 2 + . . . + w p x p = 0 w_0 + w_1x_1 + w_2x_2 + ... + w_px_p = 0 w0+w1x1+w2x2+...+wpxp=0

所有满足该方程的点构成了决策边界。

概率输出

逻辑回归不仅提供分类结果,还输出每个样本属于某一类的概率。例如:

如果 P ( y = 1 ∣ x ) = 0.8 ,说明该样本有 80 % 的概率属于类别 1 。 如果 P(y=1|x) = 0.8 ,说明该样本有 80\% 的概率属于类别 1。 如果P(y=1∣x)=0.8,说明该样本有80%的概率属于类别1。


分类模型的评价指标

为了评估分类模型的性能,我们通常使用以下指标:

1. 准确率(Accuracy)

准确率表示模型预测正确的比例:
Accuracy = True Positives + True Negatives Total Samples \text{Accuracy} = \frac{\text{True Positives} + \text{True Negatives}}{\text{Total Samples}} Accuracy=Total SamplesTrue Positives+True Negatives

2. 召回率(Recall)

召回率表示实际为正类的样本中被正确预测的比例:
Recall = True Positives True Positives + False Negatives \text{Recall} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}} Recall=True Positives+False NegativesTrue Positives

3. F1 分数

F1 分数是精确率和召回率的调和平均值:
F 1 = 2 ⋅ Precision ⋅ Recall Precision + Recall F1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} F1=2⋅Precision+RecallPrecision⋅Recall


实践部分:使用逻辑回归对 Iris 数据集进行二分类任务

数据集简介

Iris 数据集包含 150 条记录,每条记录有 4 个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和 1 个标签(鸢尾花种类)。我们将只使用前两个类别(Setosa 和 Versicolor)进行二分类任务。

完整代码

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, recall_score, f1_score, confusion_matrix, classification_report

# 加载数据
iris = load_iris()
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data['Species'] = iris.target

# 只保留前两个类别(Setosa 和 Versicolor)
data = data[data['Species'] != 2]

# 提取特征和标签
X = data.iloc[:, :2]  # 使用前两个特征(花萼长度和宽度)
y = data['Species']

# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 构建逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

print("模型评估结果:")
print(f"Accuracy: {accuracy:.2f}")
print(f"Recall: {recall:.2f}")
print(f"F1 Score: {f1:.2f}")
print("Confusion Matrix:")
print(conf_matrix)

# 绘制决策边界
plt.figure(figsize=(10, 6))

# 绘制训练集散点图
plt.scatter(X_train.iloc[:, 0], X_train.iloc[:, 1], c=y_train, cmap='coolwarm', edgecolor='k', s=100, label='Training Data')

# 绘制测试集散点图
plt.scatter(X_test.iloc[:, 0], X_test.iloc[:, 1], c=y_test, cmap='coolwarm', marker='x', s=100, label='Testing Data')

# 绘制决策边界
x_min, x_max = X.iloc[:, 0].min() - 0.5, X.iloc[:, 0].max() + 0.5
y_min, y_max = X.iloc[:, 1].min() - 0.5, X.iloc[:, 1].max() + 0.5
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3, cmap='coolwarm')

# 添加标题和标签
plt.title('Logistic Regression Decision Boundary', fontsize=16)
plt.xlabel('Sepal Length (cm)', fontsize=12)
plt.ylabel('Sepal Width (cm)', fontsize=12)
plt.legend()
plt.show()

运行结果

输出结果(输出图片见图2所示):
复制代码
模型评估结果:
Accuracy: 1.00
Recall: 1.00
F1 Score: 1.00
Confusion Matrix:
[[17  0]
 [ 0 13]]

图2:逻辑回归决策边界

(图片描述:二维平面上展示了训练集(圆点)和测试集(叉号)的数据分布,背景颜色表示决策边界划分的区域。蓝色区域对应类别 0,红色区域对应类别 1。)


总结

本文介绍了逻辑回归的基本原理及其在分类任务中的应用。通过实践部分,我们成功使用逻辑回归对 Iris 数据集进行了二分类任务,并绘制了决策边界。希望这篇文章能帮助你更好地理解逻辑回归!


参考资料

相关推荐
SteveRocket12 分钟前
Python机器学习与数据分析教程之pandas
python·机器学习·数据分析
koo36443 分钟前
李宏毅机器学习笔记32
人工智能·笔记·机器学习
材料科学研究1 小时前
机器学习催化剂设计!
深度学习·机器学习·orr·催化剂·催化剂设计·oer
材料科学研究1 小时前
机器学习锂离子电池!预估电池!
深度学习·机器学习·锂离子电池·电池·电池健康·电池管理·电池寿命
长桥夜波1 小时前
机器学习日报04
人工智能·机器学习
Ellenjing4 小时前
从 Transformer 理论到文本分类:BERT 微调实战总结
分类·bert·transformer
OG one.Z5 小时前
06_决策树
算法·决策树·机器学习
番茄寿司6 小时前
具身智能六大前沿创新思路深度解析
论文阅读·人工智能·深度学习·计算机网络·机器学习
rengang666 小时前
25-TensorFlow:概述Google开发的流行机器学习框架
人工智能·机器学习·tensorflow
Gitpchy6 小时前
Day 23 机器学习管道 pipeline
python·机器学习