快速排序_912. 排序数组(10中排序算法)
- [1 快速排序(重点)](#1 快速排序(重点))
- [2 归并排序(重点)](#2 归并排序(重点))
- [3 堆排序(堆很重要,堆排序根据个人情况掌握)](#3 堆排序(堆很重要,堆排序根据个人情况掌握))
- [4 插入排序(熟悉)](#4 插入排序(熟悉))
- [5 选择排序(了解)](#5 选择排序(了解))
- [6 冒泡排序(了解)](#6 冒泡排序(了解))
- [7 计数排序(了解)](#7 计数排序(了解))
- [8 基数排序(了解)](#8 基数排序(了解))
- [9 桶排序(了解)](#9 桶排序(了解))
- [10 希尔排序(不建议多花时间了解)](#10 希尔排序(不建议多花时间了解))
给你一个整数数组 nums,请你将该数组升序排列。
你必须在 不使用任何内置函数 的情况下解决问题,时间复杂度为 O(nlog(n)),并且空间复杂度尽可能小。
示例 1:
输入:nums = [5,2,3,1]
输出:[1,2,3,5]
示例 2:
输入:nums = [5,1,1,2,0,0]
输出:[0,0,1,1,2,5]
1 快速排序(重点)
报错代码
class Solution {
public int[] sortArray(int[] nums) {
int temp = 0;
int pivot = nums[0];
int left = 0,right = nums.length-1;
sortArray_nums(nums,left,right);
}
public int[] sortArray_nums(int[] nums,left,right) {
while(left < right){
while(nums[left]<=pivot){
left++;
}
while(pivot<=nums[right]){
right--;
}
temp = nums[left];
nums[left] = nums[right];
nums[right] = temp;
left++;
right--;
}
nums[left] = pivot;
sortArray_nums(nums,0,left-1);
sortArray_nums(nums,right+1,nums.length-1);
return nums;
}
} 我的快速排序是不是有问题
超时代码
class Solution {
public int[] sortArray(int[] nums) {
sortArray_nums(nums,0,nums.length-1);
return nums;
}
public void sortArray_nums(int[] nums,int left,int right) {
if(left>=right){
return;
}
int l = left,r = right;
int pivot = nums[left];
int temp = 0;
l++;
while(l <= r){
while(l <= r && nums[l]<=pivot){
l++;
}
while(l <= r && pivot<=nums[r]){
r--;
}
if(l <= r){
temp = nums[l];
nums[l] = nums[r];
nums[r] = temp;
l++;
r--;
}
}
nums[left] = nums[r];
nums[r] = pivot;
sortArray_nums(nums,left,r-1);
sortArray_nums(nums,r+1,right);
}
private void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
修改
javascript
class Solution {
public int[] sortArray(int[] nums) {
sortArray_nums(nums,0,nums.length-1);
return nums;
}
public void sortArray_nums(int[] nums,int left,int right) {
if(left>=right){
return;
}
int randomIndex = (left + right)/2;
swap(nums, left, randomIndex);
int l = left,r = right;
int pivot = nums[left];
l++;
while(l <= r){
while(l <= r && nums[l]<=pivot){
l++;
}
while(l <= r && pivot<=nums[r]){
r--;
}
if(l <= r){
swap(nums, l, r);
l++;
r--;
}
}
nums[left] = nums[r];
nums[r] = pivot;
sortArray_nums(nums,left,r-1);
sortArray_nums(nums,r+1,right);
}
private void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
官方题解
javascript
class Solution {
public int[] sortArray(int[] nums) {
randomizedQuicksort(nums, 0, nums.length - 1);
return nums;
}
public void randomizedQuicksort(int[] nums, int l, int r) {
if (l < r) {
int pos = randomizedPartition(nums, l, r);
randomizedQuicksort(nums, l, pos - 1);
randomizedQuicksort(nums, pos + 1, r);
}
}
public int randomizedPartition(int[] nums, int l, int r) {
int i = new Random().nextInt(r - l + 1) + l; // 随机选一个作为我们的主元
swap(nums, r, i);
return partition(nums, l, r);
}
public int partition(int[] nums, int l, int r) {
int pivot = nums[r];
int i = l - 1;
for (int j = l; j <= r - 1; ++j) {
if (nums[j] <= pivot) {
i = i + 1;
swap(nums, i, j);
}
}
swap(nums, i + 1, r);
return i + 1;
}
private void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
快速排序 1:基本快速排序
javascript
import java.util.Random;
public class Solution {
// 快速排序 1:基本快速排序
/**
* 列表大小等于或小于该大小,将优先于 quickSort 使用插入排序
*/
private static final int INSERTION_SORT_THRESHOLD = 7;
private static final Random RANDOM = new Random();
public int[] sortArray(int[] nums) {
int len = nums.length;
quickSort(nums, 0, len - 1);
return nums;
}
private void quickSort(int[] nums, int left, int right) {
// 小区间使用插入排序
if (right - left <= INSERTION_SORT_THRESHOLD) {
insertionSort(nums, left, right);
return;
}
int pIndex = partition(nums, left, right);
quickSort(nums, left, pIndex - 1);
quickSort(nums, pIndex + 1, right);
}
/**
* 对数组 nums 的子区间 [left, right] 使用插入排序
*
* @param nums 给定数组
* @param left 左边界,能取到
* @param right 右边界,能取到
*/
private void insertionSort(int[] nums, int left, int right) {
for (int i = left + 1; i <= right; i++) {
int temp = nums[i];
int j = i;
while (j > left && nums[j - 1] > temp) {
nums[j] = nums[j - 1];
j--;
}
nums[j] = temp;
}
}
private int partition(int[] nums, int left, int right) {
int randomIndex = RANDOM.nextInt(right - left + 1) + left;
swap(nums, left, randomIndex);
// 基准值
int pivot = nums[left];
int lt = left;
// 循环不变量:
// all in [left + 1, lt] < pivot
// all in [lt + 1, i) >= pivot
for (int i = left + 1; i <= right; i++) {
if (nums[i] < pivot) {
lt++;
swap(nums, i, lt);
}
}
swap(nums, left, lt);
return lt;
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
}
快速排序 2:双指针(指针对撞)快速排序
javascript
import java.util.Random;
public class Solution {
// 快速排序 2:双指针(指针对撞)快速排序
/**
* 列表大小等于或小于该大小,将优先于 quickSort 使用插入排序
*/
private static final int INSERTION_SORT_THRESHOLD = 7;
private static final Random RANDOM = new Random();
public int[] sortArray(int[] nums) {
int len = nums.length;
quickSort(nums, 0, len - 1);
return nums;
}
private void quickSort(int[] nums, int left, int right) {
// 小区间使用插入排序
if (right - left <= INSERTION_SORT_THRESHOLD) {
insertionSort(nums, left, right);
return;
}
int pIndex = partition(nums, left, right);
quickSort(nums, left, pIndex - 1);
quickSort(nums, pIndex + 1, right);
}
/**
* 对数组 nums 的子区间 [left, right] 使用插入排序
*
* @param nums 给定数组
* @param left 左边界,能取到
* @param right 右边界,能取到
*/
private void insertionSort(int[] nums, int left, int right) {
for (int i = left + 1; i <= right; i++) {
int temp = nums[i];
int j = i;
while (j > left && nums[j - 1] > temp) {
nums[j] = nums[j - 1];
j--;
}
nums[j] = temp;
}
}
private int partition(int[] nums, int left, int right) {
int randomIndex = left + RANDOM.nextInt(right - left + 1);
swap(nums, randomIndex, left);
int pivot = nums[left];
int lt = left + 1;
int gt = right;
// 循环不变量:
// all in [left + 1, lt) <= pivot
// all in (gt, right] >= pivot
while (true) {
while (lt <= right && nums[lt] < pivot) {
lt++;
}
while (gt > left && nums[gt] > pivot) {
gt--;
}
if (lt >= gt) {
break;
}
// 细节:相等的元素通过交换,等概率分到数组的两边
swap(nums, lt, gt);
lt++;
gt--;
}
swap(nums, left, gt);
return gt;
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
}
快速排序 3:三指针快速排序
javascript
import java.util.Random;
public class Solution {
// 快速排序 3:三指针快速排序
/**
* 列表大小等于或小于该大小,将优先于 quickSort 使用插入排序
*/
private static final int INSERTION_SORT_THRESHOLD = 7;
private static final Random RANDOM = new Random();
public int[] sortArray(int[] nums) {
int len = nums.length;
quickSort(nums, 0, len - 1);
return nums;
}
private void quickSort(int[] nums, int left, int right) {
// 小区间使用插入排序
if (right - left <= INSERTION_SORT_THRESHOLD) {
insertionSort(nums, left, right);
return;
}
int randomIndex = left + RANDOM.nextInt(right - left + 1);
swap(nums, randomIndex, left);
// 循环不变量:
// all in [left + 1, lt] < pivot
// all in [lt + 1, i) = pivot
// all in [gt, right] > pivot
int pivot = nums[left];
int lt = left;
int gt = right + 1;
int i = left + 1;
while (i < gt) {
if (nums[i] < pivot) {
lt++;
swap(nums, i, lt);
i++;
} else if (nums[i] == pivot) {
i++;
} else {
gt--;
swap(nums, i, gt);
}
}
swap(nums, left, lt);
// 注意这里,大大减少了两侧分治的区间
quickSort(nums, left, lt - 1);
quickSort(nums, gt, right);
}
/**
* 对数组 nums 的子区间 [left, right] 使用插入排序
*
* @param nums 给定数组
* @param left 左边界,能取到
* @param right 右边界,能取到
*/
private void insertionSort(int[] nums, int left, int right) {
for (int i = left + 1; i <= right; i++) {
int temp = nums[i];
int j = i;
while (j > left && nums[j - 1] > temp) {
nums[j] = nums[j - 1];
j--;
}
nums[j] = temp;
}
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
}
2 归并排序(重点)
javascript
public class Solution {
// 归并排序
/**
* 列表大小等于或小于该大小,将优先于 mergeSort 使用插入排序
*/
private static final int INSERTION_SORT_THRESHOLD = 7;
public int[] sortArray(int[] nums) {
int len = nums.length;
int[] temp = new int[len];
mergeSort(nums, 0, len - 1, temp);
return nums;
}
/**
* 对数组 nums 的子区间 [left, right] 进行归并排序
*
* @param nums
* @param left
* @param right
* @param temp 用于合并两个有序数组的辅助数组,全局使用一份,避免多次创建和销毁
*/
private void mergeSort(int[] nums, int left, int right, int[] temp) {
// 小区间使用插入排序
if (right - left <= INSERTION_SORT_THRESHOLD) {
insertionSort(nums, left, right);
return;
}
int mid = left + (right - left) / 2;
// Java 里有更优的写法,在 left 和 right 都是大整数时,即使溢出,结论依然正确
// int mid = (left + right) >>> 1;
mergeSort(nums, left, mid, temp);
mergeSort(nums, mid + 1, right, temp);
// 如果数组的这个子区间本身有序,无需合并
if (nums[mid] <= nums[mid + 1]) {
return;
}
mergeOfTwoSortedArray(nums, left, mid, right, temp);
}
/**
* 对数组 arr 的子区间 [left, right] 使用插入排序
*
* @param arr 给定数组
* @param left 左边界,能取到
* @param right 右边界,能取到
*/
private void insertionSort(int[] arr, int left, int right) {
for (int i = left + 1; i <= right; i++) {
int temp = arr[i];
int j = i;
while (j > left && arr[j - 1] > temp) {
arr[j] = arr[j - 1];
j--;
}
arr[j] = temp;
}
}
/**
* 合并两个有序数组:先把值复制到临时数组,再合并回去
*
* @param nums
* @param left
* @param mid [left, mid] 有序,[mid + 1, right] 有序
* @param right
* @param temp 全局使用的临时数组
*/
private void mergeOfTwoSortedArray(int[] nums, int left, int mid, int right, int[] temp) {
System.arraycopy(nums, left, temp, left, right + 1 - left);
int i = left;
int j = mid + 1;
for (int k = left; k <= right; k++) {
if (i == mid + 1) {
nums[k] = temp[j];
j++;
} else if (j == right + 1) {
nums[k] = temp[i];
i++;
} else if (temp[i] <= temp[j]) {
// 注意写成 < 就丢失了稳定性(相同元素原来靠前的排序以后依然靠前)
nums[k] = temp[i];
i++;
} else {
// temp[i] > temp[j]
nums[k] = temp[j];
j++;
}
}
}
}
3 堆排序(堆很重要,堆排序根据个人情况掌握)
javascript
public class Solution {
public int[] sortArray(int[] nums) {
int len = nums.length;
// 将数组整理成堆
heapify(nums);
// 循环不变量:区间 [0, i] 堆有序
for (int i = len - 1; i >= 1; ) {
// 把堆顶元素(当前最大)交换到数组末尾
swap(nums, 0, i);
// 逐步减少堆有序的部分
i--;
// 下标 0 位置下沉操作,使得区间 [0, i] 堆有序
siftDown(nums, 0, i);
}
return nums;
}
/**
* 将数组整理成堆(堆有序)
*
* @param nums
*/
private void heapify(int[] nums) {
int len = nums.length;
// 只需要从 i = (len - 1) / 2 这个位置开始逐层下移
for (int i = (len - 1) / 2; i >= 0; i--) {
siftDown(nums, i, len - 1);
}
}
/**
* @param nums
* @param k 当前下沉元素的下标
* @param end [0, end] 是 nums 的有效部分
*/
private void siftDown(int[] nums, int k, int end) {
while (2 * k + 1 <= end) {
int j = 2 * k + 1;
if (j + 1 <= end && nums[j + 1] > nums[j]) {
j++;
}
if (nums[j] > nums[k]) {
swap(nums, j, k);
} else {
break;
}
k = j;
}
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
}
4 插入排序(熟悉)
javascript
public class Solution {
// 插入排序:稳定排序,在接近有序的情况下,表现优异
public int[] sortArray(int[] nums) {
int len = nums.length;
// 循环不变量:将 nums[i] 插入到区间 [0, i) 使之成为有序数组
for (int i = 1; i < len; i++) {
// 先暂存这个元素,然后之前元素逐个后移,留出空位
int temp = nums[i];
int j = i;
// 注意边界 j > 0
while (j > 0 && nums[j - 1] > temp) {
nums[j] = nums[j - 1];
j--;
}
nums[j] = temp;
}
return nums;
}
}
5 选择排序(了解)
javascript
import java.util.Arrays;
public class Solution {
// 选择排序:每一轮选择最小元素交换到未排定部分的开头
public int[] sortArray(int[] nums) {
int len = nums.length;
// 循环不变量:[0, i) 有序,且该区间里所有元素就是最终排定的样子
for (int i = 0; i < len - 1; i++) {
// 选择区间 [i, len - 1] 里最小的元素的索引,交换到下标 i
int minIndex = i;
for (int j = i + 1; j < len; j++) {
if (nums[j] < nums[minIndex]) {
minIndex = j;
}
}
swap(nums, i, minIndex);
}
return nums;
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
public static void main(String[] args) {
int[] nums = {5, 2, 3, 1};
Solution solution = new Solution();
int[] res = solution.sortArray(nums);
System.out.println(Arrays.toString(res));
}
}
6 冒泡排序(了解)
javascript
public class Solution {
// 冒泡排序:超时
public int[] sortArray(int[] nums) {
int len = nums.length;
for (int i = len - 1; i >= 0; i--) {
// 先默认数组是有序的,只要发生一次交换,就必须进行下一轮比较,
// 如果在内层循环中,都没有执行一次交换操作,说明此时数组已经是升序数组
boolean sorted = true;
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
swap(nums, j, j + 1);
sorted = false;
}
}
if (sorted) {
break;
}
}
return nums;
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
}
7 计数排序(了解)
javascript
public class Solution {
// 计数排序
private static final int OFFSET = 50000;
public int[] sortArray(int[] nums) {
int len = nums.length;
// 由于 -50000 <= A[i] <= 50000
// 因此"桶" 的大小为 50000 - (-50000) = 10_0000
// 并且设置偏移 OFFSET = 50000,目的是让每一个数都能够大于等于 0
// 这样就可以作为 count 数组的下标,查询这个数的计数
int size = 10_0000;
// 计数数组
int[] count = new int[size];
// 计算计数数组
for (int num : nums) {
count[num + OFFSET]++;
}
// 把 count 数组变成前缀和数组
for (int i = 1; i < size; i++) {
count[i] += count[i - 1];
}
// 先把原始数组赋值到一个临时数组里,然后回写数据
int[] temp = new int[len];
System.arraycopy(nums, 0, temp, 0, len);
// 为了保证稳定性,从后向前赋值
for (int i = len - 1; i >= 0; i--) {
int index = count[temp[i] + OFFSET] - 1;
nums[index] = temp[i];
count[temp[i] + OFFSET]--;
}
return nums;
}
}
8 基数排序(了解)
javascript
public class Solution {
// 基数排序:低位优先
private static final int OFFSET = 50000;
public int[] sortArray(int[] nums) {
int len = nums.length;
// 预处理,让所有的数都大于等于 0,这样才可以使用基数排序
for (int i = 0; i < len; i++) {
nums[i] += OFFSET;
}
// 第 1 步:找出最大的数字
int max = nums[0];
for (int num : nums) {
if (num > max) {
max = num;
}
}
// 第 2 步:计算出最大的数字有几位,这个数值决定了我们要将整个数组看几遍
int maxLen = getMaxLen(max);
// 计数排序需要使用的计数数组和临时数组
int[] count = new int[10];
int[] temp = new int[len];
// 表征关键字的量:除数
// 1 表示按照个位关键字排序
// 10 表示按照十位关键字排序
// 100 表示按照百位关键字排序
// 1000 表示按照千位关键字排序
int divisor = 1;
// 有几位数,外层循环就得执行几次
for (int i = 0; i < maxLen; i++) {
// 每一步都使用计数排序,保证排序结果是稳定的
// 这一步需要额外空间保存结果集,因此把结果保存在 temp 中
countingSort(nums, temp, divisor, len, count);
// 交换 nums 和 temp 的引用,下一轮还是按照 nums 做计数排序
int[] t = nums;
nums = temp;
temp = t;
// divisor 自增,表示采用低位优先的基数排序
divisor *= 10;
}
int[] res = new int[len];
for (int i = 0; i < len; i++) {
res[i] = nums[i] - OFFSET;
}
return res;
}
private void countingSort(int[] nums, int[] res, int divisor, int len, int[] count) {
// 1、计算计数数组
for (int i = 0; i < len; i++) {
// 计算数位上的数是几,先取个位,再十位、百位
int remainder = (nums[i] / divisor) % 10;
count[remainder]++;
}
// 2、变成前缀和数组
for (int i = 1; i < 10; i++) {
count[i] += count[i - 1];
}
// 3、从后向前赋值
for (int i = len - 1; i >= 0; i--) {
int remainder = (nums[i] / divisor) % 10;
int index = count[remainder] - 1;
res[index] = nums[i];
count[remainder]--;
}
// 4、count 数组需要设置为 0 ,以免干扰下一次排序使用
for (int i = 0; i < 10; i++) {
count[i] = 0;
}
}
/**
* 获取一个整数的最大位数
*
* @param num
* @return
*/
private int getMaxLen(int num) {
int maxLen = 0;
while (num > 0) {
num /= 10;
maxLen++;
}
return maxLen;
}
}
9 桶排序(了解)
javascript
public class Solution {
// 桶排序
// 1 <= A.length <= 10000
// -50000 <= A[i] <= 50000
// 10_0000
private static final int OFFSET = 50000;
public int[] sortArray(int[] nums) {
int len = nums.length;
// 第 1 步:将数据转换为 [0, 10_0000] 区间里的数
for (int i = 0; i < len; i++) {
nums[i] += OFFSET;
}
// 第 2 步:观察数据,设置桶的个数
// 步长:步长如果设置成 10 会超出内存限制
int step = 1000;
// 桶的个数
int bucketLen = 10_0000 / step;
int[][] temp = new int[bucketLen + 1][len];
int[] next = new int[bucketLen + 1];
// 第 3 步:分桶
for (int num : nums) {
int bucketIndex = num / step;
temp[bucketIndex][next[bucketIndex]] = num;
next[bucketIndex]++;
}
// 第 4 步:对于每个桶执行插入排序
for (int i = 0; i < bucketLen + 1; i++) {
insertionSort(temp[i], next[i] - 1);
}
// 第 5 步:从桶里依次取出来
int[] res = new int[len];
int index = 0;
for (int i = 0; i < bucketLen + 1; i++) {
int curLen = next[i];
for (int j = 0; j < curLen; j++) {
res[index] = temp[i][j] - OFFSET;
index++;
}
}
return res;
}
private void insertionSort(int[] arr, int endIndex) {
for (int i = 1; i <= endIndex; i++) {
int temp = arr[i];
int j = i;
while (j > 0 && arr[j - 1] > temp) {
arr[j] = arr[j - 1];
j--;
}
arr[j] = temp;
}
}
}
10 希尔排序(不建议多花时间了解)
javascript
public class Solution {
// 希尔排序
public int[] sortArray(int[] nums) {
int len = nums.length;
int h = 1;
// 使用 Knuth 增量序列
// 找增量的最大值
while (3 * h + 1 < len) {
h = 3 * h + 1;
}
while (h >= 1) {
// insertion sort
for (int i = h; i < len; i++) {
insertionForDelta(nums, h, i);
}
h = h / 3;
}
return nums;
}
/**
* 将 nums[i] 插入到对应分组的正确位置上,其实就是将原来 1 的部分改成 gap
*
* @param nums
* @param gap
* @param i
*/
private void insertionForDelta(int[] nums, int gap, int i) {
int temp = nums[i];
int j = i;
// 注意:这里 j >= deta 的原因
while (j >= gap && nums[j - gap] > temp) {
nums[j] = nums[j - gap];
j -= gap;
}
nums[j] = temp;
}
}