halcon激光三角测量(二十一)calibrate_sheet_of_light_calplate

目录

一、calibrate_sheet_of_light_calplate例程代码

1、第一部分:标定相机。

2、第二部分:标定光平面相对于世界坐标系的位姿。

1)设定位置1为世界坐标系,获得位置1的CameraPose

2)设定位置2为临时坐标系,获得位置2的TmpCameraPose

3)把轮廓坐标投影到参考坐标系

4)拟合平面

3、第三部分:标定两次连续采集轮廓图像,目标对象的移动。

4、第四部分:将校准变换应用于已获得的视差图像。

CamParam、CamPose、LightplanePose、MovementPose怎么得到的

通过例程reconstruct_connection_rod_calib标定得到的。

csharp 复制代码
*第一部分

dev_update_off ()
dev_close_window ()
read_image (ProfileImage, 'sheet_of_light/connection_rod_001.png')
get_image_size (ProfileImage, Width, Height)
dev_open_window (0, 0, Width, Height, 'black', WindowHandle)
dev_set_draw ('margin')
dev_set_line_width (3)
dev_set_color ('lime green')
dev_set_lut ('default')
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')

gen_cam_par_area_scan_polynomial (0.0125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.000006, 0.000006, 376.0, 120.0, 752, 240, StartParameters)
CalTabDescription := 'caltab_30mm.descr'
* Note that the thickness of the calibration target used for this example is 0.63 mm.
* If you adapt this example program to your application, it is necessary to determine
* the thickness of your specific calibration target and to use this value instead.
CalTabThickness := .00063
NumCalibImages := 20

create_calib_data ('calibration_object', 1, 1, CalibDataID)
set_calib_data_cam_param (CalibDataID, 0, [], StartParameters)
set_calib_data_calib_object (CalibDataID, 0, CalTabDescription)
* 

for Index := 1 to NumCalibImages by 1
    read_image (Image, 'sheet_of_light/connection_rod_calib_' + Index$'.2')
    dev_display (Image)
    find_calib_object (Image, CalibDataID, 0, 0, Index, [], [])
    get_calib_data_observ_points (CalibDataID, 0, 0, Index, Row, Column, _Index, Pose)
    get_calib_data_observ_contours (Contours, CalibDataID, 'caltab', 0, 0, Index)
    dev_set_color ('green')
    dev_display (Contours)
    gen_cross_contour_xld (Cross, Row, Column, 6, 0.785398)
    dev_set_color ('yellow')
    dev_display (Cross)
endfor

calibrate_cameras (CalibDataID, Errors)
disp_message (WindowHandle, 'The camera calibration has been performed successfully', 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
*第二部分
dev_set_colored (3)
MinThreshold := 80

Index := 19
get_calib_data (CalibDataID, 'calib_obj_pose', [0,Index], 'pose', CalTabPose)
set_origin_pose (CalTabPose, 0.0, 0.0, CalTabThickness, CameraPose)
read_image (CalTabImage1, 'sheet_of_light/connection_rod_calib_' + Index$'.2')
dev_display (CalTabImage1)
get_calib_data (CalibDataID, 'camera', 0, 'params', CameraParameters)
disp_3d_coord_system (WindowHandle, CameraParameters, CameraPose, .01)
disp_message (WindowHandle, 'World coordinate system', 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()

Index := 20
get_calib_data (CalibDataID, 'calib_obj_pose', [0,Index], 'pose', CalTabPose)
set_origin_pose (CalTabPose, 0.0, 0.0, CalTabThickness, TmpCameraPose)
read_image (CalTabImage2, 'sheet_of_light/connection_rod_calib_' + Index$'.2')
dev_display (CalTabImage2)
disp_3d_coord_system (WindowHandle, CameraParameters, TmpCameraPose, .01)
disp_message (WindowHandle, 'Temporary coordinate system', 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
* 

dev_clear_window ()
read_image (ProfileImage1, 'sheet_of_light/connection_rod_lightline_019.png')
compute_3d_coordinates_of_light_line (ProfileImage1, MinThreshold, CameraParameters, [], CameraPose, X19, Y19, Z19)
if (|X19| == 0 or |Y19| == 0 or |Z19| == 0)
    dev_display (ProfileImage1)
    disp_message (WindowHandle, 'The profile MUST be oriented horizontally\nfor successfull processing!\nThe program will exit.', 'window', 12, 12, 'black', 'true')
    return ()
endif

read_image (ProfileImage2, 'sheet_of_light/connection_rod_lightline_020.png')
compute_3d_coordinates_of_light_line (ProfileImage2, MinThreshold, CameraParameters, TmpCameraPose, CameraPose, X20, Y20, Z20)
if (|X20| == 0 or |Y20| == 0 or |Z20| == 0)
    disp_message (WindowHandle, 'The profile MUST be oriented horizontally\nfor successfull processing!\nThe program will exit.', 'window', 12, 12, 'black', 'true')
    return ()
endif

fit_3d_plane_xyz ([X19,X20], [Y19,Y20], [Z19,Z20], Ox, Oy, Oz, Nx, Ny, Nz, MeanResidual)
if (|Nx| == 0 or |Ny| == 0 or |Nz| == 0)
    disp_message (WindowHandle, 'Too few 3d points have been provided to fit the light plane,\nor the points are (nearly) collinear!\nThe program will exit.', 'window', 12, 12, 'black', 'true')
    return ()
endif
if (MeanResidual > 5e-5)
    disp_message (WindowHandle, 'The light plane could not be fitted accurately!\nThe mean residual distance between the 3d-points and the\nfitted plane is too high (' + (MeanResidual * 1000)$'.3' + 'mm). Please check the\nquality and the correctness of those points.\nThe program will exit!', 'window', 12, 21, 'black', 'true')
    return ()
endif

get_light_plane_pose (Ox, Oy, Oz, Nx, Ny, Nz, LightPlanePose)
if (|LightPlanePose| != 7)
    disp_message (WindowHandle, 'The pose of the light plane could not be\ndetermined. Please verify that the vector\npassed at input of the procedure\nget_light_plane_pose() is not null.\nThe program will exit!', 'window', 12, 12, 'black', 'true')
    return ()
endif
String := ['LightPlanePose: ','  Tx    = ' + LightPlanePose[0]$'.3' + ' m','  Ty    = ' + LightPlanePose[1]$'.3' + ' m','  Tz    = ' + LightPlanePose[2]$'.3' + ' m','  alpha = ' + LightPlanePose[3]$'.4' + '°','  beta  = ' + LightPlanePose[4]$'.4' + '°','  gamma = ' + LightPlanePose[5]$'.4' + '°','  type  = ' + LightPlanePose[6]]
disp_message (WindowHandle, String, 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
dev_clear_window ()
*第三部分
read_image (CaltabImagePos1, 'sheet_of_light/caltab_at_position_1.png')
read_image (CaltabImagePos20, 'sheet_of_light/caltab_at_position_2.png')
StepNumber := 19

set_calib_data_cam_param (CalibDataID, 0, [], CameraParameters)
find_calib_object (CaltabImagePos1, CalibDataID, 0, 0, NumCalibImages + 1, [], [])
get_calib_data_observ_points (CalibDataID, 0, 0, NumCalibImages + 1, Row1, Column1, Index1, CameraPosePos1)
find_calib_object (CaltabImagePos20, CalibDataID, 0, 0, NumCalibImages + 2, [], [])
get_calib_data_observ_points (CalibDataID, 0, 0, NumCalibImages + 2, Row1, Column1, Index1, CameraPosePos20)

set_origin_pose (CameraPosePos1, 0.0, 0.0, CalTabThickness, CameraPosePos1)
set_origin_pose (CameraPosePos20, 0.0, 0.0, CalTabThickness, CameraPosePos20)
pose_to_hom_mat3d (CameraPosePos1, HomMat3DPos1ToCamera)
pose_to_hom_mat3d (CameraPosePos20, HomMat3DPos20ToCamera)
pose_to_hom_mat3d (CameraPose, HomMat3DWorldToCamera)
hom_mat3d_invert (HomMat3DWorldToCamera, HomMat3DCameraToWorld)
hom_mat3d_compose (HomMat3DCameraToWorld, HomMat3DPos1ToCamera, HomMat3DPos1ToWorld)
hom_mat3d_compose (HomMat3DCameraToWorld, HomMat3DPos20ToCamera, HomMat3DPos20ToWorld)
affine_trans_point_3d (HomMat3DPos1ToWorld, 0, 0, 0, StartX, StartY, StartZ)
affine_trans_point_3d (HomMat3DPos20ToWorld, 0, 0, 0, EndX, EndY, EndZ)
create_pose (EndX - StartX, EndY - StartY, EndZ - StartZ, 0, 0, 0, 'Rp+T', 'gba', 'point', MovementPoseNSteps)
MovementPose := MovementPoseNSteps / StepNumber
String := ['MovementPose: ','  Tx    = ' + MovementPose[0]$'.3' + ' m','  Ty    = ' + MovementPose[1]$'.3' + ' m','  Tz    = ' + MovementPose[2]$'.3' + ' m','  alpha = ' + MovementPose[3] + '°','  beta  = ' + MovementPose[4] + '°','  gamma = ' + MovementPose[5] + '°','  type  = ' + MovementPose[6]]
disp_message (WindowHandle, String, 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
dev_clear_window ()
*第四部分
read_image (Disparity, 'sheet_of_light/connection_rod_disparity.tif')
* Create a model and set the required parameters
gen_rectangle1 (ProfileRegion, 120, 75, 195, 710)
create_sheet_of_light_model (ProfileRegion, ['min_gray', 'num_profiles', 'ambiguity_solving'], [70, 290, 'first'], SheetOfLightModelID)
set_sheet_of_light_param (SheetOfLightModelID, 'calibration', 'xyz')
set_sheet_of_light_param (SheetOfLightModelID, 'camera_parameter', CameraParameters)
set_sheet_of_light_param (SheetOfLightModelID, 'camera_pose', CameraPose)
set_sheet_of_light_param (SheetOfLightModelID, 'lightplane_pose', LightPlanePose)
set_sheet_of_light_param (SheetOfLightModelID, 'movement_pose', MovementPose)
* 
apply_sheet_of_light_calibration (Disparity, SheetOfLightModelID)
get_sheet_of_light_result (X, SheetOfLightModelID, 'x')
get_sheet_of_light_result (Y, SheetOfLightModelID, 'y')
get_sheet_of_light_result (Z, SheetOfLightModelID, 'z')
* 
dev_close_window ()
get_image_size (Disparity, Width, Height)
dev_open_window (Height + 10, 0, Width * .5, Height * .5, 'black', WindowHandle3)
set_display_font (WindowHandle3, 14, 'mono', 'true', 'false')
dev_set_lut ('temperature')
dev_display (Z)
disp_message (WindowHandle3, 'Calibrated Z-coordinates', 'window', 12, 12, 'black', 'true')
* 
* Display the resulting Y-coordinates
dev_open_window ((Height + 10) * .5, 0, Width * .5, Height * .5, 'black', WindowHandle2)
set_display_font (WindowHandle2, 14, 'mono', 'true', 'false')
dev_display (Y)
disp_message (WindowHandle2, 'Calibrated Y-coordinates', 'window', 12, 12, 'black', 'true')
* 
* Display the resulting X-coordinates
dev_open_window (0, 0, Width * .5, Height * .5, 'black', WindowHandle1)
dev_display (X)
set_display_font (WindowHandle1, 14, 'mono', 'true', 'false')
disp_message (WindowHandle1, 'Calibrated X-coordinates', 'window', 12, 12, 'black', 'true')
* 

get_sheet_of_light_result_object_model_3d (SheetOfLightModelID, ObjectModel3D)
gen_sheet_of_light_object_model_3d (SheetOfLightModelID, 0.1, 0.05, 0.3, OM3DLightPlane, OM3DMovement, OM3DCamera, OM3DCone)
dev_open_window (0, Width * .5 + 10, Width, Height * 1.5, 'black', WindowHandle)
dev_set_lut ('default')
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')
visualize_object_model_3d (WindowHandle, [ObjectModel3D,OM3DLightPlane,OM3DMovement,OM3DCamera,OM3DCone], [], [-0.002989894371, 0.1325031046, 8.667736001, 288.0583956, 2.798360231, 297.2537796, 0], ['alpha_1', 'alpha_3', 'alpha_4', 'alpha_5', 'color_0', 'color_3', 'color_4', 'color_5'], [0.5, 0.5, 0.5, 0.5, 'blue', 'green', 'green', 'green'], 'Setup with reconstructed object', [], [], PoseOut)

二、为什么把视差图作为Rows输入

get_sheet_of_light_result (Disparity, SheetOfLightHandle, 'disparity')

返回每个像素的测量视差,即检测到轮廓的亚像素Row值。

csharp 复制代码
image_points_to_world_plane (CameraParameters, LocalCameraPose, Disparities, Columns + Column1, 1.0, X, Y)

三、坐标系和点变换区分

1、ReferenceCameraPose:参考坐标系在相机坐标系下的姿态

HomMat3D_ReferenceToCam:参考坐标系的点到相机坐标系的点的变换(相机坐标系到参考坐标系)

HomMat3D_LocalToReference:本地坐标系的点到参考坐标系的点的变换

HomMat3D_LocalToCam:本地坐标系的点到相机坐标系的点的变换

csharp 复制代码
pose_to_hom_mat3d (ReferenceCameraPose, HomMat3D_ReferenceToCam)
hom_mat3d_invert (HomMat3D_ReferenceToCam, HomMat3D_CamToReference)
hom_mat3d_compose (HomMat3D_CamToReference, HomMat3D_LocalToCam, HomMat3D_LocalToReference)
**这里用坐标系去理解,就是Reference到相机x相机到Local=Reference到Local

2、pose_compose 和hom_mat3d_compose

下面代码中得到的PoseCompose=PoseComposeAlternative

csharp 复制代码
create_pose (0.1, 0.1, 0.1, 77, 0, 0, 'Rp+T', 'gba', 'point', PoseLeft)
create_pose (0.2, 0.2, 0.2, 0, 90, 0, 'Rp+T', 'gba', 'point', PoseRight)
pose_compose (PoseLeft, PoseRight, PoseCompose)
pose_to_hom_mat3d (PoseLeft, HomMat3DLeft)
pose_to_hom_mat3d (PoseRight, HomMat3DRight)
hom_mat3d_compose (HomMat3DLeft, HomMat3DRight, HomMat3DCompose)
hom_mat3d_to_pose (HomMat3DCompose, PoseComposeAlternative)
相关推荐
千宇宙航26 分钟前
闲庭信步使用SV搭建图像测试平台:第二十七课——图像的腐蚀
图像处理·计算机视觉·fpga开发
zhongqu_3dnest2 小时前
3D可视化:开启多维洞察新时代
3d·3d建模·空间计算·3d可视化·三维空间·沉浸式体验
luofeiju5 小时前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
试着14 小时前
【数据标注师】3D标注
3d·数据标注师·3d标注
昵称是6硬币15 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
云天徽上10 天前
【目标检测】图像处理基础:像素、分辨率与图像格式解析
图像处理·人工智能·目标检测·计算机视觉·数据可视化
工业3D_大熊10 天前
3D模式格式转换工具HOOPS Exchange如何将3D PDF转换为STEP格式?
3d·pdf·3d格式转换·3d模型格式转换·cad格式转换·cad数据格式转换·3d模型可视化
广州华锐视点10 天前
浅议 3D 展示技术为线上车展新体验带来的助力
3d
仙贝大饼11 天前
C#Halcon从零开发_Day14_AOI缺陷检测策略1_Bolb分析+特征分析_饼干破损检测
c#·缺陷检测·halcon·机器视觉·aoi