halcon激光三角测量(二十一)calibrate_sheet_of_light_calplate

目录

一、calibrate_sheet_of_light_calplate例程代码

1、第一部分:标定相机。

2、第二部分:标定光平面相对于世界坐标系的位姿。

1)设定位置1为世界坐标系,获得位置1的CameraPose

2)设定位置2为临时坐标系,获得位置2的TmpCameraPose

3)把轮廓坐标投影到参考坐标系

4)拟合平面

3、第三部分:标定两次连续采集轮廓图像,目标对象的移动。

4、第四部分:将校准变换应用于已获得的视差图像。

CamParam、CamPose、LightplanePose、MovementPose怎么得到的

通过例程reconstruct_connection_rod_calib标定得到的。

csharp 复制代码
*第一部分

dev_update_off ()
dev_close_window ()
read_image (ProfileImage, 'sheet_of_light/connection_rod_001.png')
get_image_size (ProfileImage, Width, Height)
dev_open_window (0, 0, Width, Height, 'black', WindowHandle)
dev_set_draw ('margin')
dev_set_line_width (3)
dev_set_color ('lime green')
dev_set_lut ('default')
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')

gen_cam_par_area_scan_polynomial (0.0125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.000006, 0.000006, 376.0, 120.0, 752, 240, StartParameters)
CalTabDescription := 'caltab_30mm.descr'
* Note that the thickness of the calibration target used for this example is 0.63 mm.
* If you adapt this example program to your application, it is necessary to determine
* the thickness of your specific calibration target and to use this value instead.
CalTabThickness := .00063
NumCalibImages := 20

create_calib_data ('calibration_object', 1, 1, CalibDataID)
set_calib_data_cam_param (CalibDataID, 0, [], StartParameters)
set_calib_data_calib_object (CalibDataID, 0, CalTabDescription)
* 

for Index := 1 to NumCalibImages by 1
    read_image (Image, 'sheet_of_light/connection_rod_calib_' + Index$'.2')
    dev_display (Image)
    find_calib_object (Image, CalibDataID, 0, 0, Index, [], [])
    get_calib_data_observ_points (CalibDataID, 0, 0, Index, Row, Column, _Index, Pose)
    get_calib_data_observ_contours (Contours, CalibDataID, 'caltab', 0, 0, Index)
    dev_set_color ('green')
    dev_display (Contours)
    gen_cross_contour_xld (Cross, Row, Column, 6, 0.785398)
    dev_set_color ('yellow')
    dev_display (Cross)
endfor

calibrate_cameras (CalibDataID, Errors)
disp_message (WindowHandle, 'The camera calibration has been performed successfully', 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
*第二部分
dev_set_colored (3)
MinThreshold := 80

Index := 19
get_calib_data (CalibDataID, 'calib_obj_pose', [0,Index], 'pose', CalTabPose)
set_origin_pose (CalTabPose, 0.0, 0.0, CalTabThickness, CameraPose)
read_image (CalTabImage1, 'sheet_of_light/connection_rod_calib_' + Index$'.2')
dev_display (CalTabImage1)
get_calib_data (CalibDataID, 'camera', 0, 'params', CameraParameters)
disp_3d_coord_system (WindowHandle, CameraParameters, CameraPose, .01)
disp_message (WindowHandle, 'World coordinate system', 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()

Index := 20
get_calib_data (CalibDataID, 'calib_obj_pose', [0,Index], 'pose', CalTabPose)
set_origin_pose (CalTabPose, 0.0, 0.0, CalTabThickness, TmpCameraPose)
read_image (CalTabImage2, 'sheet_of_light/connection_rod_calib_' + Index$'.2')
dev_display (CalTabImage2)
disp_3d_coord_system (WindowHandle, CameraParameters, TmpCameraPose, .01)
disp_message (WindowHandle, 'Temporary coordinate system', 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
* 

dev_clear_window ()
read_image (ProfileImage1, 'sheet_of_light/connection_rod_lightline_019.png')
compute_3d_coordinates_of_light_line (ProfileImage1, MinThreshold, CameraParameters, [], CameraPose, X19, Y19, Z19)
if (|X19| == 0 or |Y19| == 0 or |Z19| == 0)
    dev_display (ProfileImage1)
    disp_message (WindowHandle, 'The profile MUST be oriented horizontally\nfor successfull processing!\nThe program will exit.', 'window', 12, 12, 'black', 'true')
    return ()
endif

read_image (ProfileImage2, 'sheet_of_light/connection_rod_lightline_020.png')
compute_3d_coordinates_of_light_line (ProfileImage2, MinThreshold, CameraParameters, TmpCameraPose, CameraPose, X20, Y20, Z20)
if (|X20| == 0 or |Y20| == 0 or |Z20| == 0)
    disp_message (WindowHandle, 'The profile MUST be oriented horizontally\nfor successfull processing!\nThe program will exit.', 'window', 12, 12, 'black', 'true')
    return ()
endif

fit_3d_plane_xyz ([X19,X20], [Y19,Y20], [Z19,Z20], Ox, Oy, Oz, Nx, Ny, Nz, MeanResidual)
if (|Nx| == 0 or |Ny| == 0 or |Nz| == 0)
    disp_message (WindowHandle, 'Too few 3d points have been provided to fit the light plane,\nor the points are (nearly) collinear!\nThe program will exit.', 'window', 12, 12, 'black', 'true')
    return ()
endif
if (MeanResidual > 5e-5)
    disp_message (WindowHandle, 'The light plane could not be fitted accurately!\nThe mean residual distance between the 3d-points and the\nfitted plane is too high (' + (MeanResidual * 1000)$'.3' + 'mm). Please check the\nquality and the correctness of those points.\nThe program will exit!', 'window', 12, 21, 'black', 'true')
    return ()
endif

get_light_plane_pose (Ox, Oy, Oz, Nx, Ny, Nz, LightPlanePose)
if (|LightPlanePose| != 7)
    disp_message (WindowHandle, 'The pose of the light plane could not be\ndetermined. Please verify that the vector\npassed at input of the procedure\nget_light_plane_pose() is not null.\nThe program will exit!', 'window', 12, 12, 'black', 'true')
    return ()
endif
String := ['LightPlanePose: ','  Tx    = ' + LightPlanePose[0]$'.3' + ' m','  Ty    = ' + LightPlanePose[1]$'.3' + ' m','  Tz    = ' + LightPlanePose[2]$'.3' + ' m','  alpha = ' + LightPlanePose[3]$'.4' + '°','  beta  = ' + LightPlanePose[4]$'.4' + '°','  gamma = ' + LightPlanePose[5]$'.4' + '°','  type  = ' + LightPlanePose[6]]
disp_message (WindowHandle, String, 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
dev_clear_window ()
*第三部分
read_image (CaltabImagePos1, 'sheet_of_light/caltab_at_position_1.png')
read_image (CaltabImagePos20, 'sheet_of_light/caltab_at_position_2.png')
StepNumber := 19

set_calib_data_cam_param (CalibDataID, 0, [], CameraParameters)
find_calib_object (CaltabImagePos1, CalibDataID, 0, 0, NumCalibImages + 1, [], [])
get_calib_data_observ_points (CalibDataID, 0, 0, NumCalibImages + 1, Row1, Column1, Index1, CameraPosePos1)
find_calib_object (CaltabImagePos20, CalibDataID, 0, 0, NumCalibImages + 2, [], [])
get_calib_data_observ_points (CalibDataID, 0, 0, NumCalibImages + 2, Row1, Column1, Index1, CameraPosePos20)

set_origin_pose (CameraPosePos1, 0.0, 0.0, CalTabThickness, CameraPosePos1)
set_origin_pose (CameraPosePos20, 0.0, 0.0, CalTabThickness, CameraPosePos20)
pose_to_hom_mat3d (CameraPosePos1, HomMat3DPos1ToCamera)
pose_to_hom_mat3d (CameraPosePos20, HomMat3DPos20ToCamera)
pose_to_hom_mat3d (CameraPose, HomMat3DWorldToCamera)
hom_mat3d_invert (HomMat3DWorldToCamera, HomMat3DCameraToWorld)
hom_mat3d_compose (HomMat3DCameraToWorld, HomMat3DPos1ToCamera, HomMat3DPos1ToWorld)
hom_mat3d_compose (HomMat3DCameraToWorld, HomMat3DPos20ToCamera, HomMat3DPos20ToWorld)
affine_trans_point_3d (HomMat3DPos1ToWorld, 0, 0, 0, StartX, StartY, StartZ)
affine_trans_point_3d (HomMat3DPos20ToWorld, 0, 0, 0, EndX, EndY, EndZ)
create_pose (EndX - StartX, EndY - StartY, EndZ - StartZ, 0, 0, 0, 'Rp+T', 'gba', 'point', MovementPoseNSteps)
MovementPose := MovementPoseNSteps / StepNumber
String := ['MovementPose: ','  Tx    = ' + MovementPose[0]$'.3' + ' m','  Ty    = ' + MovementPose[1]$'.3' + ' m','  Tz    = ' + MovementPose[2]$'.3' + ' m','  alpha = ' + MovementPose[3] + '°','  beta  = ' + MovementPose[4] + '°','  gamma = ' + MovementPose[5] + '°','  type  = ' + MovementPose[6]]
disp_message (WindowHandle, String, 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
dev_clear_window ()
*第四部分
read_image (Disparity, 'sheet_of_light/connection_rod_disparity.tif')
* Create a model and set the required parameters
gen_rectangle1 (ProfileRegion, 120, 75, 195, 710)
create_sheet_of_light_model (ProfileRegion, ['min_gray', 'num_profiles', 'ambiguity_solving'], [70, 290, 'first'], SheetOfLightModelID)
set_sheet_of_light_param (SheetOfLightModelID, 'calibration', 'xyz')
set_sheet_of_light_param (SheetOfLightModelID, 'camera_parameter', CameraParameters)
set_sheet_of_light_param (SheetOfLightModelID, 'camera_pose', CameraPose)
set_sheet_of_light_param (SheetOfLightModelID, 'lightplane_pose', LightPlanePose)
set_sheet_of_light_param (SheetOfLightModelID, 'movement_pose', MovementPose)
* 
apply_sheet_of_light_calibration (Disparity, SheetOfLightModelID)
get_sheet_of_light_result (X, SheetOfLightModelID, 'x')
get_sheet_of_light_result (Y, SheetOfLightModelID, 'y')
get_sheet_of_light_result (Z, SheetOfLightModelID, 'z')
* 
dev_close_window ()
get_image_size (Disparity, Width, Height)
dev_open_window (Height + 10, 0, Width * .5, Height * .5, 'black', WindowHandle3)
set_display_font (WindowHandle3, 14, 'mono', 'true', 'false')
dev_set_lut ('temperature')
dev_display (Z)
disp_message (WindowHandle3, 'Calibrated Z-coordinates', 'window', 12, 12, 'black', 'true')
* 
* Display the resulting Y-coordinates
dev_open_window ((Height + 10) * .5, 0, Width * .5, Height * .5, 'black', WindowHandle2)
set_display_font (WindowHandle2, 14, 'mono', 'true', 'false')
dev_display (Y)
disp_message (WindowHandle2, 'Calibrated Y-coordinates', 'window', 12, 12, 'black', 'true')
* 
* Display the resulting X-coordinates
dev_open_window (0, 0, Width * .5, Height * .5, 'black', WindowHandle1)
dev_display (X)
set_display_font (WindowHandle1, 14, 'mono', 'true', 'false')
disp_message (WindowHandle1, 'Calibrated X-coordinates', 'window', 12, 12, 'black', 'true')
* 

get_sheet_of_light_result_object_model_3d (SheetOfLightModelID, ObjectModel3D)
gen_sheet_of_light_object_model_3d (SheetOfLightModelID, 0.1, 0.05, 0.3, OM3DLightPlane, OM3DMovement, OM3DCamera, OM3DCone)
dev_open_window (0, Width * .5 + 10, Width, Height * 1.5, 'black', WindowHandle)
dev_set_lut ('default')
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')
visualize_object_model_3d (WindowHandle, [ObjectModel3D,OM3DLightPlane,OM3DMovement,OM3DCamera,OM3DCone], [], [-0.002989894371, 0.1325031046, 8.667736001, 288.0583956, 2.798360231, 297.2537796, 0], ['alpha_1', 'alpha_3', 'alpha_4', 'alpha_5', 'color_0', 'color_3', 'color_4', 'color_5'], [0.5, 0.5, 0.5, 0.5, 'blue', 'green', 'green', 'green'], 'Setup with reconstructed object', [], [], PoseOut)

二、为什么把视差图作为Rows输入

get_sheet_of_light_result (Disparity, SheetOfLightHandle, 'disparity')

返回每个像素的测量视差,即检测到轮廓的亚像素Row值。

csharp 复制代码
image_points_to_world_plane (CameraParameters, LocalCameraPose, Disparities, Columns + Column1, 1.0, X, Y)

三、坐标系和点变换区分

1、ReferenceCameraPose:参考坐标系在相机坐标系下的姿态

HomMat3D_ReferenceToCam:参考坐标系的点到相机坐标系的点的变换(相机坐标系到参考坐标系)

HomMat3D_LocalToReference:本地坐标系的点到参考坐标系的点的变换

HomMat3D_LocalToCam:本地坐标系的点到相机坐标系的点的变换

csharp 复制代码
pose_to_hom_mat3d (ReferenceCameraPose, HomMat3D_ReferenceToCam)
hom_mat3d_invert (HomMat3D_ReferenceToCam, HomMat3D_CamToReference)
hom_mat3d_compose (HomMat3D_CamToReference, HomMat3D_LocalToCam, HomMat3D_LocalToReference)
**这里用坐标系去理解,就是Reference到相机x相机到Local=Reference到Local

2、pose_compose 和hom_mat3d_compose

下面代码中得到的PoseCompose=PoseComposeAlternative

csharp 复制代码
create_pose (0.1, 0.1, 0.1, 77, 0, 0, 'Rp+T', 'gba', 'point', PoseLeft)
create_pose (0.2, 0.2, 0.2, 0, 90, 0, 'Rp+T', 'gba', 'point', PoseRight)
pose_compose (PoseLeft, PoseRight, PoseCompose)
pose_to_hom_mat3d (PoseLeft, HomMat3DLeft)
pose_to_hom_mat3d (PoseRight, HomMat3DRight)
hom_mat3d_compose (HomMat3DLeft, HomMat3DRight, HomMat3DCompose)
hom_mat3d_to_pose (HomMat3DCompose, PoseComposeAlternative)
相关推荐
沃达德软件2 小时前
视频侦查图像清晰化技术
图像处理·人工智能·目标检测·机器学习·计算机视觉·视觉检测·超分辨率重建
星幻元宇VR3 小时前
消防安全教育展厅设备|消防器材装备3D展示系统
安全·3d·虚拟现实
山楂树の3 小时前
3D渲染分层机制 Layers 的原理分析(Threejs)
数据结构·3d·相机
IRevers3 小时前
RF-DETR:第一个在COCO上突破60AP的DETR(含检测和分割推理)
图像处理·人工智能·python·深度学习·目标检测·计算机视觉
应用市场4 小时前
【自动驾驶感知】基于3D部件引导的图像编辑:细粒度车辆状态理解技术详解
人工智能·3d·自动驾驶
Dfreedom.18 小时前
图像灰度处理与二值化
图像处理·人工智能·opencv·计算机视觉
Fxrain19 小时前
[Reading Paper]FFA-Net
图像处理·人工智能·计算机视觉
子午20 小时前
【2026计算机毕设~AI项目】鸟类识别系统~Python+深度学习+人工智能+图像识别+算法模型
图像处理·人工智能·python·深度学习
EliseL21 小时前
SuperMap iObjects Java 如何将3DTiles数据转换为S3M三维瓦片
java·3d·三维
qq_532453531 天前
使用 GaussianSplats3D 在 Vue 3 中构建交互式 3D 高斯点云查看器
前端·vue.js·3d