【ClickHouse 特性及应用场景】

Clickhouse是一个用于联机分析处理(OLAP)的列式数据库管理系统(columnar DBMS)。

传统数据库在数据大小比较小,索引大小适合内存,数据缓存命中率足够高的情形下能正常提供服务。但残酷的是,这种理想情形最终会随着业务的增长走到尽头,查询会变得越来越慢。你可能通过增加更多的内存,订购更快的磁盘等等来解决问题(纵向扩展),但这只是拖延解决本质问题。如果你的需求是解决怎样快速查询出结果,那么ClickHouse也许可以解决你的问题。

应用场景:

1.绝大多数请求都是用于读访问的

2.数据需要以大批次(大于1000行)进行更新,而不是单行更新;或者根本没有更新操作

3.数据只是添加到数据库,没有必要修改

4.读取数据时,会从数据库中提取出大量的行,但只用到一小部分列

5.表很"宽",即表中包含大量的列

6.查询频率相对较低(通常每台服务器每秒查询数百次或更少)

7.对于简单查询,允许大约50毫秒的延迟

8.列的值是比较小的数值和短字符串(例如,每个URL只有60个字节)

9.在处理单个查询时需要高吞吐量(每台服务器每秒高达数十亿行)

10.不需要事务

11.数据一致性要求较低

12.每次查询中只会查询一个大表。除了一个大表,其余都是小表

13.查询结果显著小于数据源。即数据有过滤或聚合。返回结果不超过单个服务器内存大小

ClickHouse限制:

1.不支持真正的删除/更新支持 不支持事务(期待后续版本支持)

2.不支持二级索引

3.有限的SQL支持,join实现与众不同

4.不支持窗口功能

5.元数据管理需要人工干预维护

相关推荐
焱焱枫33 分钟前
自适应SQL计划管理(Adaptive SQL Plan Management)在Oracle 12c中的应用
数据库·sql·oracle
2301_7930698236 分钟前
Spring Boot +SQL项目优化策略,GraphQL和SQL 区别,Spring JDBC 等原理辨析(万字长文+代码)
java·数据库·spring boot·sql·jdbc·orm
hhw1991121 小时前
spring boot知识点5
java·数据库·spring boot
ITPUB-微风1 小时前
功能开关聚合对象实践:提升金融领域的高可用性
网络·数据库·金融
去看日出1 小时前
Linux(centos)系统安装部署MySQL8.0数据库(GLIBC版本)
linux·数据库·centos
Hanyaoo2 小时前
为什么mvcc中?m_ids 列表并不等同于 min_trx_id 和 max_trx_id 之间的所有事务 ID
数据库
偏右右2 小时前
PL/SQL 异常处理
数据库·sql·oracle
利瑞华3 小时前
Redis 存在线程安全问题吗?为什么?
数据库·redis·安全
小金的学习笔记3 小时前
如何在本地和服务器新建Redis用户和密码
服务器·数据库·redis
听封3 小时前
Redis存在线程安全的问题吗?
数据库·redis·安全