【ClickHouse 特性及应用场景】

Clickhouse是一个用于联机分析处理(OLAP)的列式数据库管理系统(columnar DBMS)。

传统数据库在数据大小比较小,索引大小适合内存,数据缓存命中率足够高的情形下能正常提供服务。但残酷的是,这种理想情形最终会随着业务的增长走到尽头,查询会变得越来越慢。你可能通过增加更多的内存,订购更快的磁盘等等来解决问题(纵向扩展),但这只是拖延解决本质问题。如果你的需求是解决怎样快速查询出结果,那么ClickHouse也许可以解决你的问题。

应用场景:

1.绝大多数请求都是用于读访问的

2.数据需要以大批次(大于1000行)进行更新,而不是单行更新;或者根本没有更新操作

3.数据只是添加到数据库,没有必要修改

4.读取数据时,会从数据库中提取出大量的行,但只用到一小部分列

5.表很"宽",即表中包含大量的列

6.查询频率相对较低(通常每台服务器每秒查询数百次或更少)

7.对于简单查询,允许大约50毫秒的延迟

8.列的值是比较小的数值和短字符串(例如,每个URL只有60个字节)

9.在处理单个查询时需要高吞吐量(每台服务器每秒高达数十亿行)

10.不需要事务

11.数据一致性要求较低

12.每次查询中只会查询一个大表。除了一个大表,其余都是小表

13.查询结果显著小于数据源。即数据有过滤或聚合。返回结果不超过单个服务器内存大小

ClickHouse限制:

1.不支持真正的删除/更新支持 不支持事务(期待后续版本支持)

2.不支持二级索引

3.有限的SQL支持,join实现与众不同

4.不支持窗口功能

5.元数据管理需要人工干预维护

相关推荐
吾日三省吾码6 小时前
别只会“加索引”了!这 3 个 PostgreSQL 反常识优化,能把性能和成本一起打下来
数据库·postgresql
chian-ocean6 小时前
百万级图文检索实战:`ops-transformer` + 向量数据库构建语义搜索引擎
数据库·搜索引擎·transformer
小Tomkk7 小时前
数据库 变更和版本控制管理工具 --Bytebase 安装部署(linux 安装篇)
linux·运维·数据库·ci/cd·bytebase
qq_12498707537 小时前
基于JavaWeb的大学生房屋租赁系统(源码+论文+部署+安装)
java·数据库·人工智能·spring boot·计算机视觉·毕业设计·计算机毕业设计
艾莉丝努力练剑7 小时前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
倒流时光三十年8 小时前
SpringBoot 数据库同步 Elasticsearch 性能优化
数据库·spring boot·elasticsearch
码农小卡拉8 小时前
深入解析Spring Boot文件加载顺序与加载方式
java·数据库·spring boot
怣508 小时前
MySQL多表连接:全外连接、交叉连接与结果集合并详解
数据库·sql
lili-felicity8 小时前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
wjhx9 小时前
QT中对蓝牙权限的申请,整理一下
java·数据库·qt