【ClickHouse 特性及应用场景】

Clickhouse是一个用于联机分析处理(OLAP)的列式数据库管理系统(columnar DBMS)。

传统数据库在数据大小比较小,索引大小适合内存,数据缓存命中率足够高的情形下能正常提供服务。但残酷的是,这种理想情形最终会随着业务的增长走到尽头,查询会变得越来越慢。你可能通过增加更多的内存,订购更快的磁盘等等来解决问题(纵向扩展),但这只是拖延解决本质问题。如果你的需求是解决怎样快速查询出结果,那么ClickHouse也许可以解决你的问题。

应用场景:

1.绝大多数请求都是用于读访问的

2.数据需要以大批次(大于1000行)进行更新,而不是单行更新;或者根本没有更新操作

3.数据只是添加到数据库,没有必要修改

4.读取数据时,会从数据库中提取出大量的行,但只用到一小部分列

5.表很"宽",即表中包含大量的列

6.查询频率相对较低(通常每台服务器每秒查询数百次或更少)

7.对于简单查询,允许大约50毫秒的延迟

8.列的值是比较小的数值和短字符串(例如,每个URL只有60个字节)

9.在处理单个查询时需要高吞吐量(每台服务器每秒高达数十亿行)

10.不需要事务

11.数据一致性要求较低

12.每次查询中只会查询一个大表。除了一个大表,其余都是小表

13.查询结果显著小于数据源。即数据有过滤或聚合。返回结果不超过单个服务器内存大小

ClickHouse限制:

1.不支持真正的删除/更新支持 不支持事务(期待后续版本支持)

2.不支持二级索引

3.有限的SQL支持,join实现与众不同

4.不支持窗口功能

5.元数据管理需要人工干预维护

相关推荐
潘yi.2 小时前
NoSQL之Redis配置与优化
数据库·redis·nosql
zdkdchao2 小时前
hbase资源和数据权限控制
大数据·数据库·hbase
伤不起bb2 小时前
NoSQL 之 Redis 配置与优化
linux·运维·数据库·redis·nosql
leo__5202 小时前
PostgreSQL配置文件修改及启用方法
数据库·postgresql
归去_来兮2 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
青春之我_XP3 小时前
【基于阿里云搭建数据仓库(离线)】Data Studio创建资源与函数
大数据·数据仓库·sql·dataworks·maxcompute·data studio
南風_入弦4 小时前
优化09-表连接
数据库·oracle
Snk0xHeart5 小时前
极客大挑战 2019 EasySQL 1(万能账号密码,SQL注入,HackBar)
数据库·sql·网络安全
····懂···5 小时前
数据库OCP专业认证培训
数据库·oracle·ocp
Mikhail_G5 小时前
Python应用函数调用(二)
大数据·运维·开发语言·python·数据分析