【ClickHouse 特性及应用场景】

Clickhouse是一个用于联机分析处理(OLAP)的列式数据库管理系统(columnar DBMS)。

传统数据库在数据大小比较小,索引大小适合内存,数据缓存命中率足够高的情形下能正常提供服务。但残酷的是,这种理想情形最终会随着业务的增长走到尽头,查询会变得越来越慢。你可能通过增加更多的内存,订购更快的磁盘等等来解决问题(纵向扩展),但这只是拖延解决本质问题。如果你的需求是解决怎样快速查询出结果,那么ClickHouse也许可以解决你的问题。

应用场景:

1.绝大多数请求都是用于读访问的

2.数据需要以大批次(大于1000行)进行更新,而不是单行更新;或者根本没有更新操作

3.数据只是添加到数据库,没有必要修改

4.读取数据时,会从数据库中提取出大量的行,但只用到一小部分列

5.表很"宽",即表中包含大量的列

6.查询频率相对较低(通常每台服务器每秒查询数百次或更少)

7.对于简单查询,允许大约50毫秒的延迟

8.列的值是比较小的数值和短字符串(例如,每个URL只有60个字节)

9.在处理单个查询时需要高吞吐量(每台服务器每秒高达数十亿行)

10.不需要事务

11.数据一致性要求较低

12.每次查询中只会查询一个大表。除了一个大表,其余都是小表

13.查询结果显著小于数据源。即数据有过滤或聚合。返回结果不超过单个服务器内存大小

ClickHouse限制:

1.不支持真正的删除/更新支持 不支持事务(期待后续版本支持)

2.不支持二级索引

3.有限的SQL支持,join实现与众不同

4.不支持窗口功能

5.元数据管理需要人工干预维护

相关推荐
芷栀夏9 分钟前
基于Anything LLM的本地知识库系统远程访问实现路径
数据库·人工智能
SeaTunnel9 分钟前
SeaTunnel 社区月报(5-6 月):全新功能上线、Bug 大扫除、Merge 之星是谁?
大数据·开源·bug·数据集成·seatunnel
软件20526 分钟前
【redis使用场景——缓存——数据淘汰策略】
数据库·redis·缓存
ChinaRainbowSea38 分钟前
9-2 MySQL 分析查询语句:EXPLAIN(详细说明)
java·数据库·后端·sql·mysql
时序数据说40 分钟前
Java类加载机制及关于时序数据库IoTDB排查
java·大数据·数据库·物联网·时序数据库·iotdb
deeper_wind44 分钟前
MySQL数据库基础(小白的“升级打怪”成长之路)
linux·数据库·mysql
加勒比海涛1 小时前
Spring Cloud Gateway 实战:从网关搭建到过滤器与跨域解决方案
数据库·redis·缓存
belldeep1 小时前
java:如何用 JDBC 连接 TDSQL 数据库
java·数据库·jdbc·tdsql
大数据CLUB3 小时前
基于spark的航班价格分析预测及可视化
大数据·hadoop·分布式·数据分析·spark·数据可视化
格调UI成品3 小时前
预警系统安全体系构建:数据加密、权限分级与误报过滤方案
大数据·运维·网络·数据库·安全·预警