RAG实现大致流程

如上图所示,假如我们要参加临时考试,那我们有三种途径获取答案,1、直接查询数据 2、利用检索系统查询 3、LLM知识检索增强生成。第一种方法直接查询数据,这也是最笨拙的方法,第二种方法则是利用检索系统查询,我们需要构建很多 query-answer对,来方便我们快速检索答案,第三种则是RAG,结合大模型来快速生成答案。

图中RAG流程实现过程:

1.将外部知识库的资料,读取进行切片划分,然后再Embeding,转换成向量的形式进行存储,也就是存储在图中的vectordb中,当我们再输出query的时候,会将query也转换成vector,然后再进行相似度等方法计算,最后再进行Augmented,然后输入到LLM中,然后输出最终的大模型Generation的答案。

下图就是langchain存储外部知识库的一系列流程:

参考链接:链接

相关推荐
sali-tec1 小时前
C# 基于halcon的视觉工作流-章56-彩图转云图
人工智能·算法·计算机视觉·c#
梦想画家2 小时前
基于PyTorch的时间序列异常检测管道构建指南
人工智能·pytorch·python
Elastic 中国社区官方博客2 小时前
在 Elasticsearch 中使用 Mistral Chat completions 进行上下文工程
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
一碗绿豆汤2 小时前
机器学习第二阶段
人工智能·机器学习
用什么都重名3 小时前
DeepSeek-OCR 深度解析
人工智能·ocr·deepseek-ocr
河南骏3 小时前
RAG_检索进阶
人工智能·深度学习
灯火不休时4 小时前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
mit6.8244 小时前
[手机AI开发sdk] Aid_code IDE | PC浏览器同步访问
ide·人工智能·智能手机
deephub5 小时前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp
番石榴AI5 小时前
基于机器学习优化的主图选择方法(酒店,景点,餐厅等APP上的主图展示推荐)
图像处理·人工智能·python·机器学习