深度学习(3)-TensorFlow入门(梯度带)

TensorFlow看起来很像NumPy。但是NumPy无法做到的是,检索任意可微表达式相对于其输入的梯度。你只需要创建一个GradientTape作用域,对一个或多个输入张量做一些计算,然后就可以检索计算结果相对于输入的梯度,如代码清单3-10所示。

代码清单3-1 使用GradientTape

python 复制代码
input_var = tf.Variable(initial_value=3.)
with tf.GradientTape() as tape:
   result = tf.square(input_var)
gradient = tape.gradient(result, input_var)

要检索模型损失相对于权重的梯度,最常用的方法是gradients = tape.gradient(loss,weights)。tape.gradient()的输入张量是TensorFlow变量的输入可以是任意张量。但在默认情况下只会监视可训练变量(trainable variable)​。如果要监视常数张量,那么必须对其调用tape.watch(),手动将其标记为被监视的张量,如代码清单3-11所示。

代码清单3-11 对常数张量输入使用GradientTape

python 复制代码
input_const = tf.constant(3.)
with tf.GradientTape() as tape:
   tape.watch(input_const)
   result = tf.square(input_const)
gradient = tape.gradient(result, input_const)

之所以必须这么做,是因为如果预先存储计算梯度所需的全部信息,那么计算成本非常大。为避免浪费资源,梯度带需要知道监视什么。它默认监视可训练变量,因为计算损失相对于可训练变量列表的梯度,是梯度带最常见的用途。

梯度带是一个非常强大的工具,它甚至能够计算二阶梯度(梯度的梯度)​。举例来说,物体位置相对于时间的梯度是这个物体的速度,二阶梯度则是它的加速度。如果测量一个垂直下落的苹果的位置随时间的变化,并且发现它满足position(time) =4.9 * time ** 2,那么它的加速度是多少?我们可以用两个嵌套的梯度带找出答案,如代码清单3-12所示。

代码清单3-12 利用嵌套的梯度带计算二阶梯度

python 复制代码
time = tf.Variable(0.)
with tf.GradientTape() as outer_tape:
    with tf.GradientTape() as inner_tape:
        position =  4.9 * time ** 2
    speed = inner_tape.gradient(position, time)
acceleration = outer_tape.gradient(speed, time)  ←----内梯度带计算出一个梯度,我们用外梯度带计算这个梯度的梯度。答案自然是4.9 * 2 = 9.8

本文全部可执行代码:

python 复制代码
import tensorflow as tf
input_var = tf.Variable(initial_value=3.)
with tf.GradientTape() as tape:
   result = tf.square(input_var)
gradient = tape.gradient(result, input_var)

print(gradient)

input_const = tf.constant(3.)
with tf.GradientTape() as tape:
   tape.watch(input_const)
   result = tf.square(input_const)
gradient = tape.gradient(result, input_const)
print(gradient)

time = tf.Variable(0.)
#外层梯度带
with tf.GradientTape() as outer_tape:
    #内层梯度带
    with tf.GradientTape() as inner_tape:
        #内层计算
        position =  4.9 * time ** 2
    #内层内层梯度计算
    speed = inner_tape.gradient(position, time)
#计算梯度的梯度
acceleration = outer_tape.gradient(speed, time)
#←----内梯度带计算出一个梯度,我们用外梯度带计算这个梯度的梯度。答案自然是4.9 * 2 = 9.8
print(acceleration)
相关推荐
MARS_AI_2 小时前
云蝠智能 Voice Agent 落地展会邀约场景:重构会展行业的智能交互范式
人工智能·自然语言处理·重构·交互·语音识别·信息与通信
weixin_422456442 小时前
第N7周:调用Gensim库训练Word2Vec模型
人工智能·机器学习·word2vec
归去_来兮4 小时前
深度学习模型在C++平台的部署
c++·深度学习·模型部署
HuggingFace5 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
企企通采购云平台6 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍6 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_7 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
巴伦是只猫7 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明7 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法
lishaoan778 小时前
使用tensorflow的线性回归的例子(十二)
人工智能·tensorflow·线性回归·戴明回归