文章精读篇——用于遥感小样本语义分割的可学习Prompt

题目:Learnable Prompt for Few-Shot Semantic Segmentation in Remote Sensing Domain

会议:CVPR 2024 Workshop

论文:10.48550/arXiv.2404.10307

相关竞赛:https://codalab.lisn.upsaclay.fr/competitions/17568

年份:2024


任务背景

  • 小样本语义分割(Few-shot Segmentation):目标是在仅有少量标注样本的情况下,对图像中的新类别(novel classes)进行分割。在广义设置中,任务不仅需要分割新类别,还需要保持对基础类别(base classes)的分割性能。

  • 主要挑战

    • 灾难性遗忘(Catastrophic Forgetting):在引入新类别时,模型可能会忘记之前学习到的基础类别知识,导致基础类别的性能下降。

    • 遥感图像的特殊性:遥感图像中的目标通常具有多种尺寸,且图像分辨率较高,直接处理整张图像可能会导致计算资源不足或边界不连续的问题。

小知识:

  1. 边界不连续是指在图像分割任务中,当图像被分割成多个小块(patches)进行独立预测时,块与块之间的边界区域可能会出现不一致或不连续的分割结果。

解决方法 :1. 分块缝合技术(Patch-and-Stitch Technique) :将分块预测的结果通过图像修复(inpainting)或后处理技术进行平滑拼接,确保边界区域的分割结果一致。2. 重叠分块(Overlapping Patches):在分块时让相邻小块有一定的重叠区域,从而为边界区域提供更多的上下文信息。

  1. 支持集是新类别的少量标注样本(例如每个类别有 5 张图像及其对应的标注)。

相关工作

  1. 语义分割

  2. few-shot语义分割:现有的 FSS 方法主要关注新类别的分割,而忽略了基础类别的分割。在实际应用中,目标图像可能同时包含基础类别和新类别,因此需要模型能够同时分割这两类。作者的工作正是在这一背景下展开的,通过引入可学习提示(Learnable Prompts)分块缝合技术(Patch-and-Stitch Technique),提出了一种能够同时处理基础类别和新类别的 GFSS 方法。

相关推荐
星期天要睡觉8 小时前
计算机视觉(opencv)——基于模板匹配的身份证号识别系统
人工智能·opencv·计算机视觉
xy_recording8 小时前
Day20 K8S学习
学习·容器·kubernetes
Lynnxiaowen8 小时前
今天继续昨天的正则表达式进行学习
linux·运维·学习·正则表达式·云计算·bash
东方佑8 小时前
打破常规:“无注意力”神经网络为何依然有效?
人工智能·深度学习·神经网络
Mendix8 小时前
使用 Altair RapidMiner 将机器学习引入您的 Mendix 应用程序
人工智能·机器学习
qq_172805598 小时前
Go 装饰器模式学习文档
学习·golang·装饰器模式
Francek Chen8 小时前
【深度学习计算机视觉】03:目标检测和边界框
人工智能·pytorch·深度学习·目标检测·计算机视觉·边界框
九章云极AladdinEdu8 小时前
AI集群全链路监控:从GPU微架构指标到业务Metric关联
人工智能·pytorch·深度学习·架构·开源·gpu算力
九章云极AladdinEdu8 小时前
Kubernetes设备插件开发实战:实现GPU拓扑感知调度
人工智能·机器学习·云原生·容器·kubernetes·迁移学习·gpu算力
蒋星熠8 小时前
深入 Kubernetes:从零到生产的工程实践与原理洞察
人工智能·spring boot·微服务·云原生·容器·架构·kubernetes