文章精读篇——用于遥感小样本语义分割的可学习Prompt

题目:Learnable Prompt for Few-Shot Semantic Segmentation in Remote Sensing Domain

会议:CVPR 2024 Workshop

论文:10.48550/arXiv.2404.10307

相关竞赛:https://codalab.lisn.upsaclay.fr/competitions/17568

年份:2024


任务背景

  • 小样本语义分割(Few-shot Segmentation):目标是在仅有少量标注样本的情况下,对图像中的新类别(novel classes)进行分割。在广义设置中,任务不仅需要分割新类别,还需要保持对基础类别(base classes)的分割性能。

  • 主要挑战

    • 灾难性遗忘(Catastrophic Forgetting):在引入新类别时,模型可能会忘记之前学习到的基础类别知识,导致基础类别的性能下降。

    • 遥感图像的特殊性:遥感图像中的目标通常具有多种尺寸,且图像分辨率较高,直接处理整张图像可能会导致计算资源不足或边界不连续的问题。

小知识:

  1. 边界不连续是指在图像分割任务中,当图像被分割成多个小块(patches)进行独立预测时,块与块之间的边界区域可能会出现不一致或不连续的分割结果。

解决方法 :1. 分块缝合技术(Patch-and-Stitch Technique) :将分块预测的结果通过图像修复(inpainting)或后处理技术进行平滑拼接,确保边界区域的分割结果一致。2. 重叠分块(Overlapping Patches):在分块时让相邻小块有一定的重叠区域,从而为边界区域提供更多的上下文信息。

  1. 支持集是新类别的少量标注样本(例如每个类别有 5 张图像及其对应的标注)。

相关工作

  1. 语义分割

  2. few-shot语义分割:现有的 FSS 方法主要关注新类别的分割,而忽略了基础类别的分割。在实际应用中,目标图像可能同时包含基础类别和新类别,因此需要模型能够同时分割这两类。作者的工作正是在这一背景下展开的,通过引入可学习提示(Learnable Prompts)分块缝合技术(Patch-and-Stitch Technique),提出了一种能够同时处理基础类别和新类别的 GFSS 方法。

相关推荐
会飞的老朱4 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º5 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee7 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º8 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys8 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56788 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子8 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
执笔论英雄8 小时前
【大模型学习cuda】入们第一个例子-向量和
学习
wdfk_prog8 小时前
[Linux]学习笔记系列 -- [drivers][input]input
linux·笔记·学习
智驱力人工智能9 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算