【R包】tidyplots----取代ggplot2的科研绘图利器

文章目录

介绍

tidyplots----取代ggplot2的科研绘图利器。tidyplots的目标是简化为科学论文准备出版的情节的创建。它允许使用一致和直观的语法逐渐添加,删除和调整情节组件。

安装

You can install the released version of tidyplots from CRAN with:

r 复制代码
install.packages("tidyplots")

And the development version from GitHub with:

r 复制代码
# install.packages("devtools")
devtools::install_github("jbengler/tidyplots")

Usage

Here are some examples. Also have a look at the getting started guide and the full documentation.

r 复制代码
library(tidyplots)

study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm()
r 复制代码
energy |> 
  tidyplot(x = year, y = energy, color = energy_source) |> 
  add_barstack_absolute()
r 复制代码
energy |> 
  dplyr::filter(year %in% c(2005, 2010, 2015, 2020)) |> 
  tidyplot(y = energy, color = energy_source) |> 
  add_donut() |> 
  split_plot(by = year)
r 复制代码
energy_week |> 
  tidyplot(x = date, y = power, color = energy_source) |> 
  add_areastack_absolute()
r 复制代码
energy_week |> 
  tidyplot(x = date, y = power, color = energy_source) |> 
  add_areastack_relative()
r 复制代码
study |> 
  tidyplot(x = group, y = score, color = dose) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_mean_dash() |> 
  add_mean_value()
r 复制代码
time_course |>
  tidyplot(x = day, y = score, color = treatment) |>
  add_mean_line() |>
  add_mean_dot() |>
  add_sem_ribbon()
r 复制代码
climate |>
  tidyplot(x = month, y = year, color = max_temperature) |>
  add_heatmap()
r 复制代码
study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_boxplot() |> 
  add_test_pvalue(ref.group = 1)
r 复制代码
gene_expression |> 
  dplyr::filter(external_gene_name %in% c("Apol6", "Col5a3", "Vgf", "Bsn")) |> 
  tidyplot(x = condition, y = expression, color = sample_type) |> 
  add_mean_dash() |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm() |> 
  add_test_asterisks(hide_info = TRUE) |> 
  remove_x_axis_title() |> 
  split_plot(by = external_gene_name)
r 复制代码
study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm() |> 
  view_plot(title = "Default color scheme: 'friendly'") |> 
  adjust_colors(colors_discrete_apple) |> 
  view_plot(title = "Alternative color scheme: 'apple'")

文档

参考

相关推荐
图灵信徒1 天前
R语言第七章线性回归模型
数据挖掘·数据分析·r语言·线性回归
HsuHeinrich1 天前
利用面积图探索历史温度的变化趋势
python·数据可视化
翰佰尔HiOmics云分析3 天前
转录组分析实战:GO与KEGG富集分析原理及R语言实现
r语言·转录组·krgg
Q一件事3 天前
R语言处理潜在蒸散nc数据
开发语言·r语言
CodeCraft Studio4 天前
空间天气监测,TeeChart助力实现太阳活动数据的可视化分析
信息可视化·数据挖掘·数据分析·数据可视化·teechart·科研图表·图表库
FIT2CLOUD飞致云5 天前
安全漏洞修复,API数据源支持添加时间戳参数,DataEase开源BI工具v2.10.17 LTS版本发布
开源·数据可视化·dataease·bi·数据大屏
胡侃有料5 天前
【目标检测】two-stage------Mask R-CNN浅析-2018
目标检测·r语言·cnn
图扑可视化6 天前
图扑 HT 智慧汽车展示平台全自研技术方案
汽车·数据可视化·组态监控·汽车展示
Highcharts.js7 天前
Highcharts开发解析:从数据可视化到用户体验的全面指南
信息可视化·前端框架·数据可视化·ux·highcharts·交互图表
饭九钦vlog7 天前
一键配置kali脚本
r语言