【R包】tidyplots----取代ggplot2的科研绘图利器

文章目录

介绍

tidyplots----取代ggplot2的科研绘图利器。tidyplots的目标是简化为科学论文准备出版的情节的创建。它允许使用一致和直观的语法逐渐添加,删除和调整情节组件。

安装

You can install the released version of tidyplots from CRAN with:

r 复制代码
install.packages("tidyplots")

And the development version from GitHub with:

r 复制代码
# install.packages("devtools")
devtools::install_github("jbengler/tidyplots")

Usage

Here are some examples. Also have a look at the getting started guide and the full documentation.

r 复制代码
library(tidyplots)

study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm()
r 复制代码
energy |> 
  tidyplot(x = year, y = energy, color = energy_source) |> 
  add_barstack_absolute()
r 复制代码
energy |> 
  dplyr::filter(year %in% c(2005, 2010, 2015, 2020)) |> 
  tidyplot(y = energy, color = energy_source) |> 
  add_donut() |> 
  split_plot(by = year)
r 复制代码
energy_week |> 
  tidyplot(x = date, y = power, color = energy_source) |> 
  add_areastack_absolute()
r 复制代码
energy_week |> 
  tidyplot(x = date, y = power, color = energy_source) |> 
  add_areastack_relative()
r 复制代码
study |> 
  tidyplot(x = group, y = score, color = dose) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_mean_dash() |> 
  add_mean_value()
r 复制代码
time_course |>
  tidyplot(x = day, y = score, color = treatment) |>
  add_mean_line() |>
  add_mean_dot() |>
  add_sem_ribbon()
r 复制代码
climate |>
  tidyplot(x = month, y = year, color = max_temperature) |>
  add_heatmap()
r 复制代码
study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_boxplot() |> 
  add_test_pvalue(ref.group = 1)
r 复制代码
gene_expression |> 
  dplyr::filter(external_gene_name %in% c("Apol6", "Col5a3", "Vgf", "Bsn")) |> 
  tidyplot(x = condition, y = expression, color = sample_type) |> 
  add_mean_dash() |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm() |> 
  add_test_asterisks(hide_info = TRUE) |> 
  remove_x_axis_title() |> 
  split_plot(by = external_gene_name)
r 复制代码
study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm() |> 
  view_plot(title = "Default color scheme: 'friendly'") |> 
  adjust_colors(colors_discrete_apple) |> 
  view_plot(title = "Alternative color scheme: 'apple'")

文档

参考

相关推荐
diegoXie1 小时前
【R】正则的惰性和贪婪匹配
java·前端·r语言
综合热讯1 小时前
远健生物宣布“重生因子 R-01”全球首创研发成功 细胞炎症逆转方向实现里程碑式突破
开发语言·人工智能·r语言
Q一件事1 天前
R语言中的图片布局设置
开发语言·r语言
HsuHeinrich2 天前
利用表格探索宜居城市
python·数据可视化
生信大表哥2 天前
生物信息分析:Singularity容器技术深度解析与实战指南
数据库·r语言·rstudio·生信入门·数信院生信服务器
Tiger Z2 天前
《R for Data Science (2e)》免费中文翻译 (第14章) --- Strings(1)
数据分析·r语言·数据科学·免费书籍
山海鲸可视化2 天前
视角漫游有些单调?试试控制机器人游览场景
机器人·数字孪生·数据可视化·3d模型·第三人称相机
生信大表哥3 天前
Claude Code / Gemini CLI / Codex CLI 安装大全(Linux 服务器版)
linux·python·ai·r语言·数信院生信服务器
AI小云3 天前
【数据操作与可视化】Serborn绘图-单变量分布
python·数据可视化
杨超越luckly4 天前
HTML应用指南:利用POST请求获取全国极氪门店位置信息
python·arcgis·html·数据可视化·门店数据