【R包】tidyplots----取代ggplot2的科研绘图利器

文章目录

介绍

tidyplots----取代ggplot2的科研绘图利器。tidyplots的目标是简化为科学论文准备出版的情节的创建。它允许使用一致和直观的语法逐渐添加,删除和调整情节组件。

安装

You can install the released version of tidyplots from CRAN with:

r 复制代码
install.packages("tidyplots")

And the development version from GitHub with:

r 复制代码
# install.packages("devtools")
devtools::install_github("jbengler/tidyplots")

Usage

Here are some examples. Also have a look at the getting started guide and the full documentation.

r 复制代码
library(tidyplots)

study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm()
r 复制代码
energy |> 
  tidyplot(x = year, y = energy, color = energy_source) |> 
  add_barstack_absolute()
r 复制代码
energy |> 
  dplyr::filter(year %in% c(2005, 2010, 2015, 2020)) |> 
  tidyplot(y = energy, color = energy_source) |> 
  add_donut() |> 
  split_plot(by = year)
r 复制代码
energy_week |> 
  tidyplot(x = date, y = power, color = energy_source) |> 
  add_areastack_absolute()
r 复制代码
energy_week |> 
  tidyplot(x = date, y = power, color = energy_source) |> 
  add_areastack_relative()
r 复制代码
study |> 
  tidyplot(x = group, y = score, color = dose) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_mean_dash() |> 
  add_mean_value()
r 复制代码
time_course |>
  tidyplot(x = day, y = score, color = treatment) |>
  add_mean_line() |>
  add_mean_dot() |>
  add_sem_ribbon()
r 复制代码
climate |>
  tidyplot(x = month, y = year, color = max_temperature) |>
  add_heatmap()
r 复制代码
study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_boxplot() |> 
  add_test_pvalue(ref.group = 1)
r 复制代码
gene_expression |> 
  dplyr::filter(external_gene_name %in% c("Apol6", "Col5a3", "Vgf", "Bsn")) |> 
  tidyplot(x = condition, y = expression, color = sample_type) |> 
  add_mean_dash() |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm() |> 
  add_test_asterisks(hide_info = TRUE) |> 
  remove_x_axis_title() |> 
  split_plot(by = external_gene_name)
r 复制代码
study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm() |> 
  view_plot(title = "Default color scheme: 'friendly'") |> 
  adjust_colors(colors_discrete_apple) |> 
  view_plot(title = "Alternative color scheme: 'apple'")

文档

参考

相关推荐
Y_0317 小时前
SpringBoot+VUE3的图书管理系统
vue.js·spring boot·毕业设计·数据可视化
玄同76521 小时前
MermaidTrace库:让Python运行时“自己画出”时序图
开发语言·人工智能·python·可视化·数据可视化·日志·异常
十三画者21 小时前
【文献分享】OTMODE一种基于最优传输理论的框架,用于在单细胞多组学数据中识别差异特征
数据挖掘·数据分析·数据可视化
czliutz3 天前
R语言gm玩音乐示例代码Rmarkdown
开发语言·r语言
LASDAaaa12313 天前
【计算机视觉】基于Mask R-CNN的自动扶梯缺陷检测方法实现
计算机视觉·r语言·cnn
没有梦想的咸鱼185-1037-16634 天前
AI大模型支持下的:R-Meta分析核心技术:从热点挖掘到高级模型、助力高效科研与论文发表
开发语言·人工智能·机器学习·chatgpt·数据分析·r语言·ai写作
2501_941333104 天前
表格结构识别与内容解析——基于Cascade R-CNN的表格行、列、单元格自动检测与分类_1
分类·r语言·cnn
云州牧4 天前
Mastering Shiny 08 User feedback
r语言
淮北4944 天前
科研绘图工具R语言
开发语言·r语言
FIT2CLOUD飞致云5 天前
在线地图交互优化,查询组件选项值支持过滤条件,DataEase开源BI工具v2.10.19 LTS版本发布
开源·数据可视化·dataease·bi·数据大屏