【R包】tidyplots----取代ggplot2的科研绘图利器

文章目录

介绍

tidyplots----取代ggplot2的科研绘图利器。tidyplots的目标是简化为科学论文准备出版的情节的创建。它允许使用一致和直观的语法逐渐添加,删除和调整情节组件。

安装

You can install the released version of tidyplots from CRAN with:

r 复制代码
install.packages("tidyplots")

And the development version from GitHub with:

r 复制代码
# install.packages("devtools")
devtools::install_github("jbengler/tidyplots")

Usage

Here are some examples. Also have a look at the getting started guide and the full documentation.

r 复制代码
library(tidyplots)

study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm()
r 复制代码
energy |> 
  tidyplot(x = year, y = energy, color = energy_source) |> 
  add_barstack_absolute()
r 复制代码
energy |> 
  dplyr::filter(year %in% c(2005, 2010, 2015, 2020)) |> 
  tidyplot(y = energy, color = energy_source) |> 
  add_donut() |> 
  split_plot(by = year)
r 复制代码
energy_week |> 
  tidyplot(x = date, y = power, color = energy_source) |> 
  add_areastack_absolute()
r 复制代码
energy_week |> 
  tidyplot(x = date, y = power, color = energy_source) |> 
  add_areastack_relative()
r 复制代码
study |> 
  tidyplot(x = group, y = score, color = dose) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_mean_dash() |> 
  add_mean_value()
r 复制代码
time_course |>
  tidyplot(x = day, y = score, color = treatment) |>
  add_mean_line() |>
  add_mean_dot() |>
  add_sem_ribbon()
r 复制代码
climate |>
  tidyplot(x = month, y = year, color = max_temperature) |>
  add_heatmap()
r 复制代码
study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_boxplot() |> 
  add_test_pvalue(ref.group = 1)
r 复制代码
gene_expression |> 
  dplyr::filter(external_gene_name %in% c("Apol6", "Col5a3", "Vgf", "Bsn")) |> 
  tidyplot(x = condition, y = expression, color = sample_type) |> 
  add_mean_dash() |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm() |> 
  add_test_asterisks(hide_info = TRUE) |> 
  remove_x_axis_title() |> 
  split_plot(by = external_gene_name)
r 复制代码
study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm() |> 
  view_plot(title = "Default color scheme: 'friendly'") |> 
  adjust_colors(colors_discrete_apple) |> 
  view_plot(title = "Alternative color scheme: 'apple'")

文档

参考

相关推荐
招风的黑耳4 小时前
【Axure高保真原型】120页移动端高保真数据可视化模板
axure·数据可视化·移动端
小艳加油5 小时前
R语言生态环境数据分析:从基础操作到水文、地形、物种多度、空间聚类、排序与生物多样性的系统应用
数据分析·r语言·生态环境
希艾席帝恩5 小时前
数字孪生正在悄然改变交通管理方式
大数据·人工智能·数字孪生·数据可视化·数字化转型
Davina_yu2 天前
R语言报错:无法打开文件‘sales_2025.txt‘: No such file or directory
开发语言·r语言
小小8程序员2 天前
R 语言 4.5.0 全解析:性能优化、新特性与使用指南下载安装步骤
r语言
墨&白.3 天前
如何卸载/更新Mac上的R版本
开发语言·macos·r语言
织元Zmetaboard3 天前
物联网大屏:从数据可视化到智能决策的进化之路
物联网·三维可视化·数据可视化·大屏
FIT2CLOUD飞致云4 天前
仪表板和数据大屏支持统一设置数值格式,DataEase开源BI工具v2.10.18 LTS版本发布
开源·数据可视化·dataease·bi·数据大屏
Lun3866buzha4 天前
【深度学习】Mask R-CNN在温室番茄成熟度检测中的应用——基于ResNet18与FPN的多级特征融合分类系统
深度学习·r语言·cnn
Katecat996635 天前
夜间收费站与道路场景多类型车辆检测与分类:基于Faster R-CNN R50 PAFPN的实现_1
分类·r语言·cnn