C#与AI的交互(以DeepSeek为例)

C#与ai的交互

与AI的交互使用的Http请求的方式,通过发送请求,服务器响应ai生成的文本

下面是完整的代码,我这里使用的是Ollama本地部署的deepseek,在联网调用api时,则url会有不同

csharp 复制代码
public class OllamaRequester
{
    [Serializable]
    public class RequestData
    {
        public string model;	//模型名称
        public string prompt;	//对话文本
        public int[] context;	//上下文
        public bool stream;	//是否使用流式传输
    }

    [Serializable]
    public class ResponseData
    {
        public string model;
        public string created_at;
        public string response;	//相应内容
        public bool done;	//生成是否结束
        public string done_reason;	//结束的状态
        public int[] context;	//上下文
        public long total_duration;
        public long load_duration;
    }

    private static OllamaRequester instance;
    public static OllamaRequester Instance
    {
        get
        {
            if(instance == null)
            {
                instance = new OllamaRequester();
                instance.Init();
            }
            return instance;
        }
    }


    private int[] context;
    private HttpClient client;

    private void Init()
    {
        client = new HttpClient();
    }

    public async Task SendReq(string str, Action<ResponseData> onResOnce)
    {
    	//注意!这里是本地Ollama的地址,如果你是联网调用ai接口的的话,需要改成官网提供的url
        string url = "http://localhost:11434/api/generate"; //ollama端口默认11434

		//如果使用联网调用ai接口,则请求的参数会有不同,我这使用的是本地部署的请求参数
        RequestData data = new RequestData()
        {
            model = "deepseek-r1:7b",
            prompt = str,
            context = context,
            stream = true, //建议用流式传输,不然响应比较慢
        };
        string json = JsonUtility.ToJson(data);
        HttpContent content = new StringContent(json);
        content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("application/json");
        Debug.Log("发送请求..");
        try
        {
            var request = new HttpRequestMessage(HttpMethod.Post, url);
            request.Content = content;
            
            //这个HttpCompletionOption.ResponseHeadersRead至关重要,流式传输必须使用这个
            HttpResponseMessage msg = await client.SendAsync(request, HttpCompletionOption.ResponseHeadersRead);
            try
            {
                //不是200则直接报错
                if (msg.StatusCode != System.Net.HttpStatusCode.OK)
                {
                    Debug.LogError($"错误!statusCode=={msg.StatusCode}, 错误消息=={msg.Content}");
                    return;
                }
                Stream stream = await msg.Content.ReadAsStreamAsync();

                StreamReader reader = new StreamReader(stream);
                while (true)
                {
                    string resStr = await reader.ReadLineAsync();
                    Debug.Log("str==" + resStr);
                    ResponseData res = JsonUtility.FromJson<ResponseData>(resStr);
                    onResOnce?.Invoke(res);
                    if (res.done)
                    {
                        break;
                    }
                }
                reader.Dispose();
                stream.Dispose();
            }
            catch (Exception e)
            {
                Debug.LogError(e);
            }
        }
        catch(Exception e)
        {
            Debug.LogError(e);
        }
    }
}

注意代码中SendAynsc时,使用了HttpCompletionOption.ResponseHeadersRead ,这个枚举表示的是读取响应头部信息,并且允许你从响应流中逐步读取信息。

默认情况下,Http会等待整个响应体全部下载完,才会返回响应,这样在文本很长时响应会非常慢!所以通常建议开启流式传输

下面是ai响应的数据格式示例

lua 复制代码
--api返回的数据格式是json(因为csdn没有json格式的代码段,所以我用了lua表示)
{
    "model": "deepseek-r1:7b",	--模型
    "created_at": "2025-02-24T02:03:41.8641806Z",
    "response": "",	--响应内容,我这里因为已经结束生成了,所以resposne是空
    "done": true,	--done==true,表示结束生成
    "done_reason": "stop",	--done_reason==stop,表示正常结束,会有其他非正常结束的情况
    "context": [	--上下文,在下次发送请求的时候,需要发送context,可以让ai保持连续对话
        151644,
        108386,
        151645,
        151648,
        271,
        151649,
        271,
        108386,
        6313,
        112169,
        104639,
        56568,
        3837,
        104139,
        109944,
        106128,
        9370,
        101037,
        11319,
        102215,
        86119,
        5373,
        101898,
        99998,
        100836,
        100281,
        3837,
        35946,
        102070,
        108896,
        101036,
        6313,
        144236
    ],
    "total_duration": 4234560000,
    "load_duration": 18329400,
    "prompt_eval_count": 4,
    "prompt_eval_duration": 274000000,
    "eval_count": 31,
    "eval_duration": 3941000000
}
相关推荐
小猪快跑爱摄影19 小时前
【AutoCad 2025】【C#】零基础教程(四)——MText 常见属性
c#·autocad
小北方城市网20 小时前
鸿蒙6.0:生态质变与全场景智慧体验的全面跃升
人工智能·ai·鸿蒙6.0
炼钢厂21 小时前
C#6——DateTime
c#
Swizard1 天前
别再只会算直线距离了!用“马氏距离”揪出那个伪装的数据“卧底”
python·算法·ai
Lv11770081 天前
Visual Studio中的多态
ide·笔记·c#·visual studio
大刘讲IT1 天前
2025年企业级 AI Agent 标准化落地深度年度总结:从“对话”到“端到端价值闭环”的范式重构
大数据·人工智能·程序人生·ai·重构·制造
沛沛老爹1 天前
Web开发者快速上手AI Agent:提示词应用优化实战
人工智能·ai·agent·提示词·rag·入门知识
wuguan_1 天前
C#:多态函数重载、态符号重载、抽象、虚方法
开发语言·c#
中国胖子风清扬1 天前
SpringAI和 Langchain4j等 AI 框架之间的差异和开发经验
java·数据库·人工智能·spring boot·spring cloud·ai·langchain
广州明周科技1 天前
Revit 200+新功能之“明周科技功能商店 AI推荐助手”
科技·ai·信息可视化·bim·revit二次开发·revit·deepseek