Doris、ClickHouse 和 Flink 这三个技术典型的应用场景

Doris、ClickHouse 和 Flink 这三个技术在不同业务场景下有各自的成功落地方案,主要用于数据分析、实时计算和高性能查询。以下是一些典型的应用场景:

1. Apache Doris 落地方案

应用场景

Doris 适用于 海量数据的实时查询和分析 ,尤其适用于 报表查询、OLAP 分析BI 工具对接

案例

某互联网广告公司

  • 业务背景:广告业务需要分析用户点击行为,监测广告投放效果,并进行精准推荐。
  • 技术方案
    • 数据来源:Kafka(日志流数据)、MySQL(用户数据)
    • 数据处理:Flink 进行数据预处理,清洗后写入 Doris
    • 查询方式:BI 工具(如 Superset、DataStudio)对接 Doris,进行实时查询和多维分析
  • 效果
    • 查询延迟低于 100ms
    • 日处理数据量 TB 级
    • 替换原有 ClickHouse,减少存储成本 30%+

2. ClickHouse 落地方案

应用场景

ClickHouse 适用于 日志分析、行为分析、监控告警 等高并发查询场景。

案例

某大型电商平台

  • 业务背景:用户行为日志(点击、搜索、购买)需要实时分析,优化推荐算法和库存管理。
  • 技术方案
    • 数据来源:Nginx 日志 + 订单数据
    • 数据处理
      • Flink 进行 ETL 处理,转换后写入 ClickHouse
      • 直接使用 Materialized View 进行聚合计算
    • 查询方式:BI 仪表盘(Grafana/Superset),支持毫秒级查询
  • 效果
    • 查询性能比 MySQL 提升 100 倍
    • 支持百万级 QPS
    • 系统扩展性好,支持 PB 级数据存储

应用场景

Flink 适用于 实时数据流处理、异常检测、风控 等场景。

案例

某银行实时风控系统

  • 业务背景:需要实时检测信用卡交易,识别欺诈行为,降低风险。
  • 技术方案
    • 数据来源:Kafka 流数据(用户交易记录)
    • 数据处理
      • Flink 进行流计算,基于规则和机器学习模型进行风控分析
      • 计算结果写入 Redis(提供低延迟查询)和 Doris(做后续分析)
    • 查询方式:风控引擎自动响应,触发告警
  • 效果
    • 实时检测欺诈行为,响应时间 <1 秒
    • 降低 30% 误报率
    • Flink 并发扩展能力强,支持高吞吐量

综合方案

有些企业会结合这三者,比如:

  1. Flink 作为实时数据计算引擎
  2. ClickHouse 作为高并发查询的日志分析库
  3. Doris 作为 OLAP 数据仓库,支撑报表查询
相关推荐
秃头菜狗2 小时前
八、安装 Hadoop
大数据·hadoop·分布式
毕设源码-郭学长9 小时前
【开题答辩全过程】以 Python基于大数据的四川旅游景点数据分析与可视化为例,包含答辩的问题和答案
大数据·python·数据分析
顧棟9 小时前
【HDFS实战】HADOOP 机架感知能力-HDFS
大数据·hadoop·hdfs
程序员果子12 小时前
Kafka 深度剖析:架构演进、核心概念与设计精髓
大数据·运维·分布式·中间件·架构·kafka
isfox12 小时前
Hadoop RPC深度解析:分布式通信的核心机制
大数据
猎板PCB黄浩13 小时前
PCB 半固化片:被忽视的成本控制关键,猎板的技术选型与安全适配策略
大数据·网络·人工智能
stjiejieto13 小时前
从工具到生产力:2025 年 “人工智能 +” 的产业落地全景与价值重构
大数据·人工智能·重构
说私域13 小时前
基于定制开发开源AI智能名片S2B2C商城小程序的文案信息传达策略研究
大数据·人工智能·小程序
深蓝易网16 小时前
3C电子企业柔性制造转型:如何通过MES管理系统实现快速换线与弹性生产?
大数据·运维·人工智能·重构·制造
IT毕设梦工厂17 小时前
大数据毕业设计选题推荐-基于大数据的全国饮品门店数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata