神经网络AI原理回顾

长期记忆存储在大模型的参数权重中,不经过推理和编码无法读取,且必须依赖输入的提示,因为大模型不会无缘无故的自言自语,毕竟输入层是它唯一

与外界交互的窗口。

目前个性化大模型的局限就是训练成本过高,除非使用RAG,否则无法分类和巩固长期记忆形成自我进化的AI。


一、大脑记忆存储机制的核心发现

  1. 海马体的短期记忆功能

    • 海马体是大脑的短期记忆中枢,负责将新接收的信息暂存并初步加工。若海马体受损,会导致短期记忆无法形成(如无法记住新电话号码)。
    • 短期记忆的存储时间约为数小时至数天,类似于计算机的RAM内存,容量有限且需要重复强化才能转化为长期记忆。
  2. 大脑皮层的长期记忆存储

    • 长期记忆通过海马体与大脑皮层之间的神经重播(Replay)机制逐步固化。研究表明,海马体在睡眠期间会将标记为重要的记忆片段传递给皮层,形成稳定的神经网络连接。
    • 皮层中的记忆表现为神经元之间突触连接的改变,形成新的神经环路。
  3. 记忆转化的动态过程

    • MIT实验显示,海马体和新皮层在记忆形成初期同时激活,但长期记忆的巩固需要数周至数月。
    • 海马体通过"尖波涟漪"事件筛选关键记忆,而皮层通过突触修剪保留高频使用的连接。

二、深度学习AI的记忆机制对比

  1. Transformer模型与海马体的相似性

    • 自注意力机制:Transformer通过全局关联计算(类似海马体的信息整合)筛选关键信息,与海马体NMDA受体调控的突触可塑性高度相似。
    • 参数调控:AI模型中类似镁离子的参数调整可控制记忆强度,模仿海马体对记忆的筛选过程。
  2. 短期记忆与长期记忆的模拟

    • AI的RAM与ROM:AI的短期记忆对应GPU显存中的临时数据,长期记忆则通过参数固化到模型权重中。
    • 记忆巩固流程:与大脑类似,AI模型通过梯度下降和反向传播将重要特征写入权重,实现记忆保存。
  3. 核心差异

    • 能耗效率:人脑功耗约20W,而训练大模型需兆瓦级电力,突显生物系统的高效性。
    • 机制复杂性:大脑记忆涉及胶质细胞、神经递质等多层级调控,而AI依赖数学建模,无法完全模拟生物细节。

三、总结:相似性与差异性

维度 大脑记忆机制 深度学习AI机制
短期存储 海马体暂存,依赖神经电活动 GPU显存临时存储,依赖矩阵运算
长期固化 皮层突触重塑,需睡眠巩固 模型权重更新,需反向传播训练
信息筛选 NMDA受体镁离子门控 自注意力权重分配
能耗效率 极低(20W) 极高(训练需兆瓦级)

四、延伸思考

  • 类脑AI的发展方向:通过模拟海马体NMDA受体机制,可设计更高效的记忆模块,如动态调整模型参数以增强重要记忆。
  • 神经科学的启示:AI模型的结构验证了大脑信息处理的部分合理性,例如Transformer与海马体功能的高度契合。
相关推荐
Q同学几秒前
TORL:工具集成强化学习,让大语言模型学会用代码解题
深度学习·神经网络·llm
柠檬味拥抱几秒前
AI智能体在金融决策系统中的自主学习与行为建模方法探讨
人工智能
禺垣1 分钟前
图神经网络(GNN)模型的基本原理
深度学习
智驱力人工智能11 分钟前
智慧零售管理中的客流统计与属性分析
人工智能·算法·边缘计算·零售·智慧零售·聚众识别·人员计数
workflower29 分钟前
以光量子为例,详解量子获取方式
数据仓库·人工智能·软件工程·需求分析·量子计算·软件需求
壹氿33 分钟前
Supersonic 新一代AI数据分析平台
人工智能·数据挖掘·数据分析
柠石榴36 分钟前
【论文阅读笔记】《A survey on deep learning approaches for text-to-SQL》
论文阅读·笔记·深度学习·nlp·text-to-sql
张较瘦_40 分钟前
[论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
论文阅读·人工智能
我不是小upper1 小时前
SVM超详细原理总结
人工智能·机器学习·支持向量机
Yxh181377845541 小时前
抖去推--短视频矩阵系统源码开发
人工智能·python·矩阵