算法训练(leetcode)二刷第三十八天 | 1143. 最长公共子序列、1035. 不相交的线、53. 最大子数组和、392. 判断子序列

刷题记录

  • [1143. 最长公共子序列](#1143. 最长公共子序列)
  • [1035. 不相交的线](#1035. 不相交的线)
  • [53. 最大子数组和](#53. 最大子数组和)
  • [392. 判断子序列](#392. 判断子序列)

1143. 最长公共子序列

leetcode题目地址

本题和300. 最长递增子序列相似(题解)。

使用动态规划:

  1. dp数组含义:dp[i][j]表示 以text1[i-1]结尾的子串A以text2[j-1]结尾的子串B 的最长公共子序列的长度。
  2. 思路同300. 最长递增子序列,每个状态更新基于前面的状态,为了防止越界,dp数组下标从1开始。
  3. 状态转移方程:
  • 当 text1[i-1] == text2[j-1] 时,dp[i][j] = dp[i-1][j-1] + 1;
  • 当 text1[i-1] == text2[j-1] 时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])
    • 这里解释一下 max(dp[i-1][j], dp[i][j-1]) 的含义:由于dp数组存储的是两个子串的最长公共子序列的长度,当两个子串的单个字符不匹配时,对应下标处的dp值要赋值为前面子串的匹配情况取最长,即dp[i-1][j]表示以text1[i-2]结尾的子串A以text2[j-1]结尾的子串B 的最长公共子序列的长度,dp[i][j-1]表示以text1[i-1]结尾的子串A以text2[j-2]结尾的子串B 的最长公共子序列的长度。

时间复杂度: O ( n ∗ m ) O(n*m) O(n∗m)
空间复杂度: O ( n ∗ m ) O(n*m) O(n∗m)

java 复制代码
// java
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int len1 = text1.length(), len2 = text2.length();
        char[] arr1 = text1.toCharArray(), arr2 = text2.toCharArray();
        int[][] dp = new int[len1+1][len2+1];


        for(int i = 1; i <= len1; i++){
            for (int j = 1; j <= len2; j++){
                if(arr1[i-1] == arr2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else{
                    dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]);
                }
                // System.out.print(dp[j] + " ");
            }
            // System.out.println();
        }
        return dp[len1][len2];

    }
}

1035. 不相交的线

leetcode题目地址

本题其实与上一题1143. 最长公共子序列的思路完全一致。题目的描述时要求找不相交的线的最大连线数,而不相交的线其实就是找两个序列的公共子序列(不相交就是两个子序列在原序列中相对顺序一致)。

时间复杂度: O ( n ∗ m ) O(n*m) O(n∗m)
空间复杂度: O ( n ∗ m ) O(n*m) O(n∗m)

java 复制代码
// java
class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int len1 = nums1.length, len2 = nums2.length;
        
        int[][] dp = new int[len1+1][len2+1];

        for(int i=1; i<=len1; i++){
            for(int j=1; j<=len2; j++){
                if(nums1[i-1] == nums2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else{
                    dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        
        return dp[len1][len2];
    }
}

53. 最大子数组和

leetcode题目地址

  • dp数组含义:

    dp[i]表示以nums[i]结尾(包含)的最大子数组和

  • 状态转移方程:

    dp[i] = Math.max(dp[i-1] + nums[i], nums[i]);

    • dp[i-1] + nums[i]表示上一个(以nums[i-1]结尾的)子序列加入当前nums[i]
    • nums[i]表示从当前元素开始从头计算(仅包含当前元素的子序列)
  • 初始化:

    dp[i]表示以nums[i]结尾(包含)的最大子数组和,因此dp[0]初始化为nums[0],后面状态均为0.

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

动态规划

java 复制代码
// java
class Solution {
    public int maxSubArray(int[] nums) {
        int len = nums.length;
        int[] dp = new int[len];
        dp[0] = nums[0];
        int result = nums[0];
        for(int i=1; i<len; i++){
            dp[i] = Math.max(dp[i-1] + nums[i], nums[i]);
            result = Math.max(dp[i], result);
        }
        return result;
        
    }
}

优化版

可以看到在动规中每个状态的更新都仅依赖于前一个状态,因此无需使用数组,仅使用一个变量来记录前一个状态。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

java 复制代码
// java
class Solution {
    public int maxSubArray(int[] nums) {
        int len = nums.length;
        int res = nums[0];
        int result = nums[0];
        for(int i=1; i<len; i++){
            res = Math.max(res + nums[i], nums[i]);
            result = Math.max(res, result);
        }
        return result;
        
    }
}

392. 判断子序列

leetcode题目地址

本题本质上依旧是寻找最长公共子序列。给定s和t,判断s是否是t的子序列,也就是查看s和t的最长公共子序列长度是否等于s的长度。

  • dp数组含义:
    dp[i][j]表示 以s[i-1]结尾的子串A以t[j-1]结尾的子串B 的最长公共子序列。
  • 状态转移方程:
    • 当s[i-1] == t[j-1]时,dp[i][j] = dp[i-1][j-1] + 1;
    • 当s[i-1] != t[j-1]时,dp[i][j] = dp[i][j-1];

这里不匹配时为什么是 dp[i][j] = dp[i][j-1] 而不是 dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1])

因为是在t中查找s是否是子序列,因此在不匹配时,只能删除t中的字符来查看分别以s[i-1]和t[j-2]结尾的子串的匹配情况。

1143. 最长公共子序列不给定谁为子串,因此需要分别考虑各自为另一个字符串的子串的情况。

时间复杂度: O ( n ∗ m ) O(n*m) O(n∗m)
空间复杂度: O ( n ∗ m ) O(n*m) O(n∗m)

java 复制代码
// java
class Solution {
    public boolean isSubsequence(String s, String t) {
        char[] sArry = s.toCharArray();
        char[] tArry = t.toCharArray();
        int len1 = s.length(), len2 = t.length();
        int[][] dp = new int[len1+1][len2+1];

        for(int i=1; i<=len1; i++){
            for(int j=1; j<=len2; j++){
                if(sArry[i-1] == tArry[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = dp[i][j-1];
                }
                // System.out.print(dp[i][j] + " ");
            }
            // System.out.println();
        }
        return dp[len1][len2] == len1;
    }
}
相关推荐
掘金安东尼1 小时前
Amazon Lambda + API Gateway 实战,无服务器架构入门
算法·架构
码流之上2 小时前
【一看就会一写就废 指间算法】设计电子表格 —— 哈希表、字符串处理
javascript·算法
快手技术4 小时前
快手提出端到端生成式搜索框架 OneSearch,让搜索“一步到位”!
算法
CoovallyAIHub1 天前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
NAGNIP1 天前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo1 天前
半开区间和开区间的两个二分模版
算法
moonlifesudo1 天前
300:最长递增子序列
算法
CoovallyAIHub1 天前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub1 天前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI2 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm