自动驾驶平行仿真(基础课程一)

一、线性回归

每当我们想预测一个数值时,就会弹出回归问题 价值。常见示例包括预测价格(房屋、股票、 等)、预测住院时间(对于住院患者)、 预测需求(零售额)等等。并非每个 预测问题是经典回归的一种。稍后,我们将 引入分类问题,其目标是预测 一组类别的成员资格。

作为一个运行示例,假设我们希望估计 房屋(以美元计)基于其面积(以平方英尺为单位)和年龄(以 年)。要开发一个预测房价的模型,我们需要得到 我们亲身体验数据,包括每个的销售价格、面积和年龄 家。在机器学习的术语中,数据集称为训练数据集训练集 ,每行(包含数据 对应于一次销售)称为示例 (或数据点实例样本 )。我们试图预测的东西(价格)是 称为标签 (或目标 )。变量(年龄和面积) 所基于的预测称为特征 (或协变量)。

python 复制代码
%matplotlib inline
import math
import time
import numpy as np
import torch
from d2l import torch as d2l

线性回归 是 解决回归问题的标准工具。追溯到黎明 19 世纪(Gauss,1809 年,Legendre,1805 年),线性 回归源于几个简单的假设。首先,我们假设 特征和目标之间的关系近似线性,即条件平均值可以表示为 特点 .此设置允许 target value 可以 由于观察噪声,仍然偏离其预期值。 接下来,我们可以假设任何此类噪声都表现良好, 遵循高斯分布。通常,我们将使用 表示我们数据集中的样本数量。我们使用上标来 枚举样本和目标,并下标以索引坐标。更多 具体来说,表示样本并表示其坐标。

相关推荐
电鱼智能的电小鱼几秒前
基于 EFISH-SBC-RK3588 的无人机通信云端数据处理模块方案‌
linux·网络·人工智能·嵌入式硬件·无人机·边缘计算
HyperAI超神经6 分钟前
12个HPC教程汇总!从入门到实战,覆盖分子模拟/材料计算/生物信息分析等多个领域
图像处理·人工智能·深度学习·生物信息·分子模拟·材料计算·vasp
正在走向自律6 分钟前
AI数字人:繁荣背后的伦理困境与法律迷局(8/10)
人工智能·python·opencv·语音识别·ai数字人·ai伦理与法律
qq_4369621812 分钟前
AI数据分析的利器:解锁BI工具的无限潜力
人工智能·数据挖掘·数据分析·ai数据分析
热水养鲨鱼19 分钟前
Java实现HTML转PDF(deepSeekAi->html->pdf)
人工智能·pdf·html
灏瀚星空21 分钟前
Python在AI虚拟教学视频开发中的核心技术与前景展望
人工智能·python·音视频
qyresearch_24 分钟前
全球碳化硅晶片市场深度解析:技术迭代、产业重构与未来赛道争夺战(2025-2031)
大数据·人工智能
豆芽8191 小时前
图解YOLO(You Only Look Once)目标检测(v1-v5)
人工智能·深度学习·学习·yolo·目标检测·计算机视觉
算力云1 小时前
深度剖析!GPT-image-1 API 开放对 AI 绘画技术生态的冲击!
人工智能·openai图像生成模型·gpt-image-1
孤寂码农_defector1 小时前
AI 人工智能模型:从理论到实践的深度解析⚡YQW · Studio ⚡【Deepseek】【Chat GPT】
人工智能