自动驾驶平行仿真(基础课程一)

一、线性回归

每当我们想预测一个数值时,就会弹出回归问题 价值。常见示例包括预测价格(房屋、股票、 等)、预测住院时间(对于住院患者)、 预测需求(零售额)等等。并非每个 预测问题是经典回归的一种。稍后,我们将 引入分类问题,其目标是预测 一组类别的成员资格。

作为一个运行示例,假设我们希望估计 房屋(以美元计)基于其面积(以平方英尺为单位)和年龄(以 年)。要开发一个预测房价的模型,我们需要得到 我们亲身体验数据,包括每个的销售价格、面积和年龄 家。在机器学习的术语中,数据集称为训练数据集训练集 ,每行(包含数据 对应于一次销售)称为示例 (或数据点实例样本 )。我们试图预测的东西(价格)是 称为标签 (或目标 )。变量(年龄和面积) 所基于的预测称为特征 (或协变量)。

python 复制代码
%matplotlib inline
import math
import time
import numpy as np
import torch
from d2l import torch as d2l

线性回归 是 解决回归问题的标准工具。追溯到黎明 19 世纪(Gauss,1809 年,Legendre,1805 年),线性 回归源于几个简单的假设。首先,我们假设 特征和目标之间的关系近似线性,即条件平均值可以表示为 特点 .此设置允许 target value 可以 由于观察噪声,仍然偏离其预期值。 接下来,我们可以假设任何此类噪声都表现良好, 遵循高斯分布。通常,我们将使用 表示我们数据集中的样本数量。我们使用上标来 枚举样本和目标,并下标以索引坐标。更多 具体来说,表示样本并表示其坐标。

相关推荐
小青龙emmm4 分钟前
机器学习(五)
人工智能·机器学习
正在走向自律12 分钟前
DeepSeek:开启AI联动与模型微调的无限可能
人工智能
天一生水water31 分钟前
Deepseek:物理神经网络PINN入门教程
人工智能·深度学习·神经网络
shelly聊AI35 分钟前
【硬核拆解】DeepSeek开源周五连击:中国AI底层技术的“破壁之战”
人工智能·深度学习·开源·deepseek
油泼辣子多加38 分钟前
【计算机视觉】手势识别
人工智能·opencv·计算机视觉
张琪杭40 分钟前
PyTorch大白话解释算子二
人工智能·pytorch·python
匹马夕阳1 小时前
ollama本地部署DeepSeek-R1大模型使用前端JS调用的详细流程
人工智能·ai·js
修昔底德1 小时前
费曼学习法12 - 告别 Excel!用 Python Pandas 开启数据分析高效之路 (Pandas 入门篇)
人工智能·python·学习·excel·pandas
歌刎1 小时前
从 Transformer 到 DeepSeek-R1:大型语言模型的变革之路与前沿突破
人工智能·深度学习·语言模型·aigc·transformer·deepseek
西猫雷婶1 小时前
神经网络|(十二)|常见激活函数
人工智能·深度学习·神经网络