dlib人脸关键点绘制及微笑测试
目录
- dlib人脸关键点绘制及微笑测试
-
- [1 dlib人脸关键点](#1 dlib人脸关键点)
-
- [1.1 dlib](#1.1 dlib)
- [1.2 人脸关键点检测](#1.2 人脸关键点检测)
- [1.3 检测模型](#1.3 检测模型)
- [1.4 凸包](#1.4 凸包)
- [1.5 笑容检测](#1.5 笑容检测)
- [1.6 函数](#1.6 函数)
- [2 人脸检测代码](#2 人脸检测代码)
-
- [2.1 关键点绘制](#2.1 关键点绘制)
- [2.2 关键点连线](#2.2 关键点连线)
- [2.3 微笑检测](#2.3 微笑检测)
1 dlib人脸关键点
1.1 dlib
dlib 是一个强大的机器学习库,广泛用于人脸检测和人脸关键点检测。它提供了一个预训练的 68 点人脸关键点检测模型,可以准确地定位人脸的各个部位(如眼睛、鼻子、嘴巴等)
1.2 人脸关键点检测
dlib 的 68 点人脸关键点检测模型 基于 HOG (Histogram of Oriented Gradients)特征和线性分类器 ,结合了形状预测算法。它可以检测人脸的以下区域:
下巴(0-16)
右眉毛(17-21)
左眉毛(22-26)
鼻子(27-35)
右眼(36-41)
左眼(42-47)
嘴巴(48-67)
1.3 检测模型
dlib 提供了一个预训练的 68 点人脸关键点检测模型,可以从以下链接下载:
https://github.com/davisking/dlib-models/blob/master/shape_predictor_68_face_landmarks.dat.bz2/
1.4 凸包
凸包(Convex Hull) 是计算几何中的一个重要概念,指的是在二维或更高维空间中,包含一组点的最小凸多边形或凸多面体 。凸包在图像处理、计算机视觉、模式识别等领域有广泛应用,例如在人脸关键点检测中,可以用凸包来定义人脸区域的边界。
1.5 笑容检测
定义了两个函数,MAR:衡量嘴巴的张开程度,
和MJR:衡量嘴巴宽度与下巴宽度的比例,
人脸关键点如上,当微笑时嘴巴长款和脸颊长度都会发生改变,通过两个函数进行比较检测,进行判断是否微笑
python
def MAR(shape):
x = shape[50]
y = shape[50].reshape(1,2)
A = euclidean_distances(shape[50].reshape(1,2),shape[58].reshape(1,2))
B = euclidean_distances(shape[51].reshape(1,2),shape[57].reshape(1,2))
C = euclidean_distances(shape[52].reshape(1,2),shape[56].reshape(1,2))
D = euclidean_distances(shape[48].reshape(1,2),shape[54].reshape(1,2))
return ((A+B+C)/3)/D
def MJR(shape):
M = euclidean_distances(shape[48].reshape(1,2),shape[54].reshape(1,2))
J = euclidean_distances(shape[3].reshape(1,2),shape[13].reshape(1,2))
return M/J
1.6 函数
- detector = dlib.get_frontal_face_detector() ,加载人脸检测器
- predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') 关键点预测器
- detector(gray, 1) ,检测人脸
- gray检测的灰度图
- 1 表示对图像进行上采样次数
2 人脸检测代码
2.1 关键点绘制
代码展示:
python
import cv2
import numpy as np
import dlib
img = cv2.imread('lyf.png')
detector = dlib.get_frontal_face_detector()
faces = detector(img,0)
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
for face in faces:
shape = predictor(img,face)
landmarks = np.array([[p.x,p.y] for p in shape.parts()])
for idx,point in enumerate(landmarks):
pos = [point[0],point[1]]
cv2.circle(img,pos,2,color=(0,255,0),thickness=-1)
cv2.putText(img,str(idx),pos,cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,0.4,(255,255,255),1,cv2.LINE_AA)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果:
2.2 关键点连线
代码展示:
python
import cv2
import numpy as np
import dlib
def drawLine(start,end):
pts = shape[start:end]
for l in range(1,len(pts)):
pta = tuple(pts[l-1])
ptb = tuple(pts[l])
cv2.line(img,pta,ptb,(0,255,0),1)
def drawConvexHull(start,end):
facial = shape[start:end+1]
mouthHull = cv2.convexHull(facial)
cv2.drawContours(img,[mouthHull],-1,(0,255,0),1)
img = cv2.imread('lyf.png')
detector = dlib.get_frontal_face_detector()
faces = detector(img,0)
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
for face in faces:
shape = predictor(img,face)
shape = np.array([[p.x,p.y] for p in shape.parts()])
drawConvexHull(36,41)
drawConvexHull(42,47)
drawConvexHull(48, 59)
drawConvexHull(60, 67)
drawLine(0,17)
drawLine(17, 22)
drawLine(22, 27)
drawLine(27, 36)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果:
2.3 微笑检测
代码展示:
python
import cv2
import numpy as np
import dlib
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
v = cv2.VideoCapture('jjy_dyx.mp4')
from sklearn.metrics.pairwise import euclidean_distances
from PIL import Image, ImageDraw, ImageFont
def cv2AddChineseText(img, text, position, textColor=(255, 255, 255), textSize=30):
""" 向图片中添加中文 """
if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))#实现array到image的转换
draw = ImageDraw.Draw(img)# 在img图片上创建一个绘图的对象
# 字体的格式
fontStyle = ImageFont.truetype("simsun.ttc", textSize, encoding="utf-8")
draw.text(position, text, textColor, font=fontStyle) # 绘制文本
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)# 转换回OpenCV格式
def MAR(shape):
x = shape[50]
y = shape[50].reshape(1,2)
A = euclidean_distances(shape[50].reshape(1,2),shape[58].reshape(1,2))
B = euclidean_distances(shape[51].reshape(1,2),shape[57].reshape(1,2))
C = euclidean_distances(shape[52].reshape(1,2),shape[56].reshape(1,2))
D = euclidean_distances(shape[48].reshape(1,2),shape[54].reshape(1,2))
return ((A+B+C)/3)/D
def MJR(shape):
M = euclidean_distances(shape[48].reshape(1,2),shape[54].reshape(1,2))
J = euclidean_distances(shape[3].reshape(1,2),shape[13].reshape(1,2))
return M/J
while True:
r,img = v.read()
if not r:
break
faces = detector(img,0)
for face in faces:
shape = predictor(img,face)
shape= np.array([[p.x,p.y] for p in shape.parts()])
mar = MAR(shape)
mjr =MJR(shape)
result = '正常'
print('mar:',mar,'mjr:',mjr)
if mar>0.5:
result = '大笑'
elif mjr>0.4:
result = '微笑'
mouthHull = cv2.convexHull(shape[48:61])
img = cv2AddChineseText(img,result,mouthHull[0,0],1)
cv2.drawContours(img,[mouthHull],-1,(0,255,0),1)
cv2.imshow('img', img)
key = cv2.waitKey(1)
if key == 32:
break
v.release()
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果: