基于PyTorch的深度学习2——广播

PyTorch中的广播机制(Broadcasting Mechanism)是一种强大的功能,它允许不同形状的张量在进行算术运算时自动扩展其维度,从而使得这些操作成为可能,而无需显式地复制数据。这种机制极大地简化了代码,并提高了效率。

广播规则

广播机制遵循以下几条基本规则:

  1. 每个张量至少有一个维度
  2. 从后往前比较张量的各个维度(即从最后一个维度到第一个维度)。两个张量的对应维度要么相等,要么其中一个为1,或者一个张量在此维度上没有尺寸(即此维度不存在)。
  3. 如果某个维度上的大小是1,则该维度会被重复使用以匹配另一个张量的相应维度大小。
  4. 最终结果的形状由各输入张量中每个维度的最大值决定。

如果满足上述条件,那么这两个张量就是"广播兼容"的,可以执行元素级的操作如加法、减法等。

复制代码
import torch

A = torch.tensor([[1, 2, 3], [4, 5, 6]])  # shape: (2, 3)
B = torch.tensor([10, 20, 30])            # shape: (3)

result = A + B
# 结果:
# tensor([[11, 22, 33],
#         [14, 25, 36]])

C = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])  # shape: (2, 2, 2)
D = torch.tensor([[10, 20], [30, 40]])                   # shape: (2, 2)
result = C + D
# 结果:
# tensor([[[11, 22],
#          [33, 44]],
#         [[15, 26],
#          [37, 48]]])

接下来进一步进行演示。

复制代码
import torch
import numpy as np

# 创建NumPy数组
A = np.arange(0, 40, 10).reshape(4, 1)  # 形状为 (4, 1)
B = np.arange(0, 3)                     # 形状为 (3,)

# 将NumPy数组转换为PyTorch Tensor
A1 = torch.from_numpy(A)  # 形状为 (4, 1)
B1 = torch.from_numpy(B)  # 形状为 (3,)

# 使用广播机制自动扩展
C = A1 + B1
print("Using broadcasting:")
print(C)

# 手动实现广播
# 根据规则1,B1需要向A1看齐,把B变为(1, 3)
B2 = B1.unsqueeze(0)  # 形状变为 (1, 3)

# 使用expand函数重复数组,分别得到4x3的矩阵
A2 = A1.expand(4, 3)  # 形状变为 (4, 3)
B3 = B2.expand(4, 3)  # 形状变为 (4, 3)

# 然后进行相加,C1与C结果一致
C1 = A2 + B3
print("Manual broadcasting:")
print(C1)

无论你是通过自动广播还是手动模拟广播机制,最终的结果都是相同的:

复制代码
Using broadcasting:
tensor([[ 0,  1,  2],
        [10, 11, 12],
        [20, 21, 22],
        [30, 31, 32]], dtype=torch.int32)

Manual broadcasting:
tensor([[ 0,  1,  2],
        [10, 11, 12],
        [20, 21, 22],
        [30, 31, 32]], dtype=torch.int32)

通过上述代码和解析,我们了解到:

  • 广播机制允许不同形状的张量进行元素级的操作,而无需显式地复制数据。
  • unsqueeze 函数可以在指定位置插入一个新的维度,这对于准备广播非常有用。
  • expand 方法可以将张量扩展到目标形状,但它不会分配新的内存,而是返回一个视图,除非必要时才会复制数据。
相关推荐
寻丶幽风3 小时前
论文阅读笔记——双流网络
论文阅读·笔记·深度学习·视频理解·双流网络
伊织code4 小时前
PyTorch API 5 - 全分片数据并行、流水线并行、概率分布
pytorch·python·ai·api·-·5
CM莫问4 小时前
<论文>(微软)避免推荐域外物品:基于LLM的受限生成式推荐
人工智能·算法·大模型·推荐算法·受限生成
康谋自动驾驶5 小时前
康谋分享 | 自动驾驶仿真进入“标准时代”:aiSim全面对接ASAM OpenX
人工智能·科技·算法·机器学习·自动驾驶·汽车
深蓝学院7 小时前
密西根大学新作——LightEMMA:自动驾驶中轻量级端到端多模态模型
人工智能·机器学习·自动驾驶
归去_来兮7 小时前
人工神经网络(ANN)模型
人工智能·机器学习·人工神经网络
2201_754918417 小时前
深入理解卷积神经网络:从基础原理到实战应用
人工智能·神经网络·cnn
强盛小灵通专卖员7 小时前
DL00219-基于深度学习的水稻病害检测系统含源码
人工智能·深度学习·水稻病害
Luke Ewin7 小时前
CentOS7.9部署FunASR实时语音识别接口 | 部署商用级别实时语音识别接口FunASR
人工智能·语音识别·实时语音识别·商用级别实时语音识别
白熊1887 小时前
【计算机视觉】OpenCV实战项目:Face-Mask-Detection 项目深度解析:基于深度学习的口罩检测系统
深度学习·opencv·计算机视觉