OpenCV计算摄影学(10)将一组不同曝光的图像合并成一张高动态范围(HDR)图像的实现类cv::MergeDebevec

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

resulting HDR 图像被计算为考虑了曝光值和相机响应的各次曝光的加权平均值。

cv::MergeDebevec 是 OpenCV 中用于将一组不同曝光的图像合并成一张高动态范围(HDR)图像的具体实现类之一。它基于 Paul Debevec 提出的方法,通过利用相机响应函数(CRF, Camera Response Function)来合并这些图像,从而生成具有更高动态范围的结果。

主要功能

  • 合并不同曝光的图像:从一组不同曝光度的图像中创建一个 HDR 图像。
  • 支持 HDR 成像流程:通常与 cv::CalibrateDebevec 结合使用,后者用于估计相机响应函数。

接口概览

以下是 cv::MergeDebevec 类的一些重要成员函数和属性:

构造函数

MergeDebevec(): 默认构造函数。

成员函数

  • void process(InputArrayOfArrays src, OutputArray dst, const std::vector& times, const Mat& response):
    • 处理输入的图像序列并生成 HDR 图像。
    • 参数包括源图像序列、输出 HDR 图像、每个图像的曝光时间列表以及相机响应函数。

属性

cv::MergeDebevec 类本身没有公开的属性,其主要功能通过 process 方法实现。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/photo.hpp>

using namespace cv;

int main()
{
    // 加载不同曝光度的图像
    std::vector< Mat > src_images;
    src_images.push_back( imread( "exposure1.jpg", IMREAD_COLOR ) );
    src_images.push_back( imread( "exposure2.jpg", IMREAD_COLOR ) );
    src_images.push_back( imread( "exposure3.jpg", IMREAD_COLOR ) );

    if ( src_images.empty() )
    {
        std::cerr << "Could not open or find the images!" << std::endl;
        return -1;
    }

    // 定义每张图像的曝光时间(单位可以是秒)
    std::vector< float > times = { 0.001f, 0.01f, 0.1f };

    // 创建 CalibrateDebevec 对象以估计相机响应函数
    Ptr< CalibrateDebevec > calibrateDebevec = createCalibrateDebevec();
    Mat response;
    calibrateDebevec->process( src_images, response, times );

    // 创建 MergeDebevec 对象
    Ptr< MergeDebevec > mergeDebevec = createMergeDebevec();

    // 定义变量保存生成的 HDR 图像
    Mat hdr_image;

    // 合并图像以生成 HDR 图像
    mergeDebevec->process( src_images, hdr_image, times, response );

    // 打印 HDR 图像的信息以确认是否成功获取
    std::cout << "HDR image size: " << hdr_image.size() << std::endl;

    // 可选:保存 HDR 图像
    imwrite( "hdr_image.hdr", hdr_image );

    return 0;
}

运行结果

bash 复制代码
HDR image size: [512 x 512]
相关推荐
Lntano__y14 分钟前
详细分析大语言模型attention的计算复杂度,从数学角度分析
人工智能·语言模型·自然语言处理
法迪27 分钟前
【学习】Linux 内核中的 cgroup freezer 子系统
人工智能·opencv·计算机视觉
魔乐社区28 分钟前
OpenAI重新开源!gpt-oss-20b适配昇腾并上线魔乐社区
人工智能·gpt·深度学习·开源·大模型
用户5191495848451 小时前
WordPress开放嵌入自动发现功能中的XSS漏洞分析
人工智能·aigc
失散132 小时前
自然语言处理——03 RNN及其变体
人工智能·rnn·自然语言处理·gru·lstm
Jinkxs2 小时前
告别人工建模:AI 自动化 ETL 工具对比,数据 pipeline 搭建时间缩短 60% 的实践
人工智能·自动化·etl
B612 little star king2 小时前
UNIKGQA论文笔记
论文阅读·人工智能·笔记·自然语言处理·知识图谱
BertieHuang2 小时前
(一)深入源码,从 0 到 1 实现 Cursor
人工智能·python·程序员
reddish2 小时前
用大模型“语音指挥”网站运维?MCP + Coze 实现无代码自动化管理实战
人工智能·程序员·架构
♡喜欢做梦2 小时前
企业级大模型解决方案:架构、落地与代码实现
人工智能·ai·架构