OpenCV计算摄影学(10)将一组不同曝光的图像合并成一张高动态范围(HDR)图像的实现类cv::MergeDebevec

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

resulting HDR 图像被计算为考虑了曝光值和相机响应的各次曝光的加权平均值。

cv::MergeDebevec 是 OpenCV 中用于将一组不同曝光的图像合并成一张高动态范围(HDR)图像的具体实现类之一。它基于 Paul Debevec 提出的方法,通过利用相机响应函数(CRF, Camera Response Function)来合并这些图像,从而生成具有更高动态范围的结果。

主要功能

  • 合并不同曝光的图像:从一组不同曝光度的图像中创建一个 HDR 图像。
  • 支持 HDR 成像流程:通常与 cv::CalibrateDebevec 结合使用,后者用于估计相机响应函数。

接口概览

以下是 cv::MergeDebevec 类的一些重要成员函数和属性:

构造函数

MergeDebevec(): 默认构造函数。

成员函数

  • void process(InputArrayOfArrays src, OutputArray dst, const std::vector& times, const Mat& response):
    • 处理输入的图像序列并生成 HDR 图像。
    • 参数包括源图像序列、输出 HDR 图像、每个图像的曝光时间列表以及相机响应函数。

属性

cv::MergeDebevec 类本身没有公开的属性,其主要功能通过 process 方法实现。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/photo.hpp>

using namespace cv;

int main()
{
    // 加载不同曝光度的图像
    std::vector< Mat > src_images;
    src_images.push_back( imread( "exposure1.jpg", IMREAD_COLOR ) );
    src_images.push_back( imread( "exposure2.jpg", IMREAD_COLOR ) );
    src_images.push_back( imread( "exposure3.jpg", IMREAD_COLOR ) );

    if ( src_images.empty() )
    {
        std::cerr << "Could not open or find the images!" << std::endl;
        return -1;
    }

    // 定义每张图像的曝光时间(单位可以是秒)
    std::vector< float > times = { 0.001f, 0.01f, 0.1f };

    // 创建 CalibrateDebevec 对象以估计相机响应函数
    Ptr< CalibrateDebevec > calibrateDebevec = createCalibrateDebevec();
    Mat response;
    calibrateDebevec->process( src_images, response, times );

    // 创建 MergeDebevec 对象
    Ptr< MergeDebevec > mergeDebevec = createMergeDebevec();

    // 定义变量保存生成的 HDR 图像
    Mat hdr_image;

    // 合并图像以生成 HDR 图像
    mergeDebevec->process( src_images, hdr_image, times, response );

    // 打印 HDR 图像的信息以确认是否成功获取
    std::cout << "HDR image size: " << hdr_image.size() << std::endl;

    // 可选:保存 HDR 图像
    imwrite( "hdr_image.hdr", hdr_image );

    return 0;
}

运行结果

bash 复制代码
HDR image size: [512 x 512]
相关推荐
连线Insight2 小时前
智谱、MiniMax争夺“大模型第一股”:高增长之下各有难题
大数据·人工智能·microsoft
美狐美颜SDK开放平台2 小时前
专业直播美颜SDK如何打造?美型功能开发思路与方案分享
大数据·人工智能·音视频·美颜sdk·直播美颜sdk·视频美颜sdk
居然JuRan2 小时前
AI工具"翻车"现场:为什么你学了那么多,还是用不好AI?
人工智能
科学创新前沿2 小时前
人工智能流体力学仿真专题学习
人工智能·cfd·流体力学
张哈大2 小时前
AI Ping 上新限免:GLM-4.7 与 MiniMax-M2.1 实测对比
人工智能·python
后端小肥肠3 小时前
27条作品涨粉77万?我用Coze破解了“藏经人”的流量密码
人工智能·aigc·coze
那雨倾城3 小时前
YOLO + MediaPipe 在PiscCode上解决多脸 Landmark 中「人脸数量固定」的问题
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
MicroTech20253 小时前
MLGO微算法科技推出人工智能与量子计算融合新成果:基于QLSS与LCHS的量子DPM算法技术
人工智能·科技·算法
xwill*3 小时前
pytorch中项目配置文件的管理与导入方式
人工智能·python
CodeCraft Studio3 小时前
Stimulsoft报表与仪表板产品重磅发布2026.1版本:进一步强化跨平台、数据可视化、合规及 AI 辅助设计等
人工智能·信息可视化·报表开发·数据可视化·stimulsoft·仪表板·报表工具