modelscope实时手机检测-通用 模型导出Onnx、修改模型输出维度

目录

说明

代码

其他

参考


说明

本模型为高性能热门应用系列检测模型中的 实时手机检测模型,基于面向工业落地的高性能检测框架DAMOYOLO,其精度和速度超越当前经典的YOLO系列方法。用户使用的时候,仅需要输入一张图像,便可以获得图像中所有手机的坐标信息,并可用于打电话检测等后续应用场景。

本模型为实时手机检测模型,基于检测框架DAMOYOLO-S模型,DAMO-YOLO是一个面向工业落地的目标检测框架,兼顾模型速度与精度,其训练的模型效果超越了目前的一众YOLO系列方法,并且仍然保持极高的推理速度。

代码

复制代码
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

model_id = 'damo/cv_tinynas_object-detection_damoyolo_phone'
input_location = 'image_phone.jpg'

phone_detection = pipeline(Tasks.domain_specific_object_detection, model=model_id)
result = phone_detection(input_location)
print("result is : ", result)

#================模型导出============================
from modelscope.models import Model
import torch

model_id = 'damo/cv_tinynas_object-detection_damoyolo_phone'
model = Model.from_pretrained(model_id)
model.eval()
input = torch.randn((1,3,640,640)).float()
type(model).__call__ = type(model).forward
torch.onnx.export(model, input,'damoyolo_phone.onnx',input_names=["input"],output_names=["output"],opset_version=13)


#================修改模型输出维度=======================
import onnx
from onnx import helper, TensorProto,shape_inference

# 加载原始模型
model = onnx.load("damoyolo_phone.onnx")

# 获取原始输出节点信息
original_output = model.graph.output[0]
print(f"Original output shape: {original_output.type.tensor_type.shape}")

# 创建Transpose节点
transpose_node = helper.make_node(
        "Transpose",
        inputs=[original_output.name],  # 使用原始输出作为输入
        outputs=["transposed_output"],
        perm=[0, 2, 1]  # 交换第1和第2维度
)

# 创建新的输出Tensor
new_output = helper.make_tensor_value_info(
        "transposed_output",
        TensorProto.FLOAT,
        [1, 5, 8400]  # 新的形状
)

# 添加新节点到计算图
model.graph.node.append(transpose_node)

# 替换输出
model.graph.output.remove(original_output)
model.graph.output.insert(0, new_output)

# 检查并修复模型结构
model = shape_inference.infer_shapes(model)

# 保存修改后的模型
onnx.save(model, "model_modified.onnx")
print("Model modified and saved successfully!")
复制代码
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

model_id = 'damo/cv_tinynas_object-detection_damoyolo_phone'
input_location = 'image_phone.jpg'

phone_detection = pipeline(Tasks.domain_specific_object_detection, model=model_id)
result = phone_detection(input_location)
print("result is : ", result)

#================模型导出============================
from modelscope.models import Model
import torch

model_id = 'damo/cv_tinynas_object-detection_damoyolo_phone'
model = Model.from_pretrained(model_id)
model.eval()
input = torch.randn((1,3,640,640)).float()
type(model).__call__ = type(model).forward
torch.onnx.export(model, input,'damoyolo_phone.onnx',input_names=["input"],output_names=["output"],opset_version=13)


#================修改模型输出维度=======================
import onnx
from onnx import helper, TensorProto,shape_inference

# 加载原始模型
model = onnx.load("damoyolo_phone.onnx")

# 获取原始输出节点信息
original_output = model.graph.output[0]
print(f"Original output shape: {original_output.type.tensor_type.shape}")

# 创建Transpose节点
transpose_node = helper.make_node(
        "Transpose",
        inputs=[original_output.name],  # 使用原始输出作为输入
        outputs=["transposed_output"],
        perm=[0, 2, 1]  # 交换第1和第2维度
)

# 创建新的输出Tensor
new_output = helper.make_tensor_value_info(
        "transposed_output",
        TensorProto.FLOAT,
        [1, 5, 8400]  # 新的形状
)

# 添加新节点到计算图
model.graph.node.append(transpose_node)

# 替换输出
model.graph.output.remove(original_output)
model.graph.output.insert(0, new_output)

# 检查并修复模型结构
model = shape_inference.infer_shapes(model)

# 保存修改后的模型
onnx.save(model, "model_modified.onnx")
print("Model modified and saved successfully!")

其他

模型修改后推理实现C# OnnxRuntime DAMO-YOLO 手机检测

参考

https://modelscope.cn/models/iic/cv_tinynas_object-detection_damoyolo_phone/summary

相关推荐
人类发明了工具8 分钟前
【深度学习-基础知识】单机多卡和多机多卡训练
人工智能·深度学习
站大爷IP16 分钟前
Python与MySQL:从基础操作到实战技巧的完整指南
python
CoovallyAIHub19 分钟前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
老歌老听老掉牙21 分钟前
SymPy 矩阵到 NumPy 数组的全面转换指南
python·线性代数·矩阵·numpy·sympy
CoovallyAIHub21 分钟前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
lxmyzzs25 分钟前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12
站大爷IP26 分钟前
Python条件判断:从基础到进阶的实用指南
python
赛博郎中30 分钟前
pygame小游戏飞机大战_8继承精灵玩家优化
python·pygame
William一直在路上42 分钟前
Python数据类型转换详解:从基础到实践
开发语言·python
trayvontang2 小时前
Python虚拟环境与包管理工具(uv、Conda)
python·conda·uv·虚拟环境·miniconda·miniforge