证明:曲线的可导点不能同时为极值点和拐点

设函数 f ( x ) f(x) f(x)在某点 x 0 x_0 x0处可导,并且满足:

  • x 0 x_0 x0是极值点,即 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0;
  • x 0 x_0 x0是拐点,即曲率发生变化,或者等价地, f ′ ′ ( x ) f''(x) f′′(x)在 x 0 x_0 x0处变号。

1. 极值点的性质

由于 x 0 x_0 x0是极值点,必要条件是 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0。此外,在极值点附近,二阶导数 f ′ ′ ( x 0 ) f''(x_0) f′′(x0)需要满足:

  • 若 f ′ ′ ( x 0 ) > 0 f''(x_0)>0 f′′(x0)>0,则 x 0 x_0 x0处为局部极小值点(函数在此点呈"凹"形)。
  • 若 f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f′′(x0)<0,则 x 0 x_0 x0处为局部极大值点(函数在此点呈"凸"形)。

2. 拐点的性质

拐点的定义是曲率发生变化,即 f ′ ′ ( x ) f''(x) f′′(x)在 x 0 x_0 x0处变号。这意味着:

在 x 0 x_0 x0左侧, f ′ ′ ( x ) f''(x) f′′(x)和右侧的符号相反。

3. 产生矛盾

在极值点 x 0 x_0 x0, f ′ ′ ( x 0 ) f''(x_0) f′′(x0)不等于零,否则无法判定极值的凹凸性;

但如果 f ′ ′ ( x ) f''(x) f′′(x)变号,则必须存在某个点 x 0 x_0 x0使得 f ′ ′ ( x 0 ) = 0 f''(x_0)=0 f′′(x0)=0,否则变号无法发生;

这与极值点的二阶导数非零(保证极值的充分性)矛盾。

因此,可导函数的极值点不可能是拐点

相关推荐
张人玉28 分钟前
VisionPro 定位与卡尺测量学习笔记
笔记·学习·计算机视觉·vsionprp
songyuc32 分钟前
【BiFormer】BiFormer: Vision Transformer with Bi-Level Routing Attention 译读笔记
笔记·transformer
觉醒大王1 小时前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
feasibility.1 小时前
AI 编程助手进阶指南:从 Claude Code 到 OpenCode 的工程化经验总结
人工智能·经验分享·设计模式·自动化·agi·skills·opencode
三水不滴1 小时前
计网:输入网址到网页显示
经验分享·笔记·计算机网络
JustDI-CM2 小时前
AI学习笔记-提示词工程
人工智能·笔记·学习
爱写bug的野原新之助2 小时前
加密摘要算法MD5、SHA、HMAC:学习笔记
笔记·学习
Think_Higher3 小时前
广告投放术语一文解读 CPM CPC CPA OCPC OCPM OCPA
经验分享
小乔的编程内容分享站4 小时前
C语言笔记之函数
c语言·笔记
AI职业加油站4 小时前
职业提升之路:我的大数据分析师学习与备考分享
大数据·人工智能·经验分享·学习·职场和发展·数据分析