证明:曲线的可导点不能同时为极值点和拐点

设函数 f ( x ) f(x) f(x)在某点 x 0 x_0 x0处可导,并且满足:

  • x 0 x_0 x0是极值点,即 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0;
  • x 0 x_0 x0是拐点,即曲率发生变化,或者等价地, f ′ ′ ( x ) f''(x) f′′(x)在 x 0 x_0 x0处变号。

1. 极值点的性质

由于 x 0 x_0 x0是极值点,必要条件是 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0。此外,在极值点附近,二阶导数 f ′ ′ ( x 0 ) f''(x_0) f′′(x0)需要满足:

  • 若 f ′ ′ ( x 0 ) > 0 f''(x_0)>0 f′′(x0)>0,则 x 0 x_0 x0处为局部极小值点(函数在此点呈"凹"形)。
  • 若 f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f′′(x0)<0,则 x 0 x_0 x0处为局部极大值点(函数在此点呈"凸"形)。

2. 拐点的性质

拐点的定义是曲率发生变化,即 f ′ ′ ( x ) f''(x) f′′(x)在 x 0 x_0 x0处变号。这意味着:

在 x 0 x_0 x0左侧, f ′ ′ ( x ) f''(x) f′′(x)和右侧的符号相反。

3. 产生矛盾

在极值点 x 0 x_0 x0, f ′ ′ ( x 0 ) f''(x_0) f′′(x0)不等于零,否则无法判定极值的凹凸性;

但如果 f ′ ′ ( x ) f''(x) f′′(x)变号,则必须存在某个点 x 0 x_0 x0使得 f ′ ′ ( x 0 ) = 0 f''(x_0)=0 f′′(x0)=0,否则变号无法发生;

这与极值点的二阶导数非零(保证极值的充分性)矛盾。

因此,可导函数的极值点不可能是拐点

相关推荐
sz-lcw5 小时前
MySQL知识笔记
笔记·mysql·adb
古译汉书5 小时前
嵌入式铁头山羊STM32-各章节详细笔记-查阅传送门
数据结构·笔记·stm32·单片机·嵌入式硬件·个人开发
2301_800050998 小时前
DNS 服务器
linux·运维·笔记
汇能感知8 小时前
光谱相机的未来趋势
经验分享·笔记·科技
老顾聊技术10 小时前
目标检测在工厂制造中的创新应用与实践
经验分享
ctrigger10 小时前
2026年考研10月10日开始网上预报名
考研
liweiweili12610 小时前
《信息管理学基础(第三版)》考研知识点梳理总结
考研
风已经起了11 小时前
FPGA学习笔记——图像处理之对比度调节(直方图均衡化)
图像处理·笔记·学习·fpga开发·fpga
go_bai11 小时前
Linux--常见工具
linux·开发语言·经验分享·笔记·vim·学习方法
图先12 小时前
考研分类真题—数列极限的计算
考研