矩阵逆 逆矩阵

一、矩阵逆(Matrix Inverse)核心概念

1️⃣ 数学定义

对于n阶方阵A ,若存在矩阵 A − 1 A^{-1} A−1使得:

A ⋅ A − 1 = I A \cdot A^{-1} = I A⋅A−1=I

其中I为单位矩阵,则称A为可逆矩阵 , A − 1 A^{-1} A−1为A的逆矩阵。

2️⃣ 可逆条件
  • 行列式非零 : det ⁡ ( A ) ≠ 0 \det(A) \neq 0 det(A)=0
  • 满秩:矩阵的秩等于阶数
  • 特征值全非零

二、代码解析

python 复制代码
a = np.array([[1, 2], 
             [3, 4]])

print(np.linalg.inv(a))  
# 输出:[[-2.   1. ]
#        [ 1.5 -0.5]]

验证计算正确性

python 复制代码
print(a @ np.linalg.inv(a))  
# 应近似单位矩阵(可能有微小误差):
# [[1.0000000e+00 0.0000000e+00]
#  [8.8817842e-16 1.0000000e+00]]

三、不可逆矩阵处理

1️⃣ 判断矩阵是否可逆
python 复制代码
# 计算行列式
det = np.linalg.det(a)
if abs(det) > 1e-6:  # 考虑浮点误差
    inv_a = np.linalg.inv(a)
else:
    print("矩阵不可逆!")
2️⃣ 伪逆矩阵(应对不可逆情况)
python 复制代码
# 使用Moore-Penrose伪逆
pseudo_inv = np.linalg.pinv(a)

四、工程应用场景

应用场景 说明 代码示例
线性方程组求解 A x = b Ax = b Ax=b → x = A − 1 b x = A^{-1}b x=A−1b x = np.linalg.inv(A) @ b
坐标变换 逆向变换矩阵计算 transform_inv = np.linalg.inv(transform_matrix)
白化处理 数据预处理中的去相关操作 whitening = inv(cov_matrix) @ data

五、不同矩阵求逆方法对比

方法 优点 缺点 时间复杂度
高斯消元法 精确解 仅适用于小型矩阵 O(n³)
LU分解 可复用分解结果 需要矩阵可逆 O(n³)
伪逆 处理奇异矩阵 计算成本较高 O(n³)

六、实际案例:线性回归解析解

1️⃣ 正规方程

θ = ( X T X ) − 1 X T y \theta = (X^TX)^{-1}X^Ty θ=(XTX)−1XTy

2️⃣ NumPy实现
python 复制代码
X = np.array([[1, 2], 
             [1, 3]])
y = np.array([4, 5])

# 计算参数θ
theta = np.linalg.inv(X.T @ X) @ X.T @ y
print(theta)  # 输出:[2. 1.] → y = 2 + 1*x

七、数值稳定性建议

1️⃣ 避免直接求逆

推荐使用 np.linalg.solve更稳定:

python 复制代码
# 代替 theta = inv(X.T@X) @ X.T@y
theta = np.linalg.solve(X.T @ X, X.T @ y)
2️⃣ 条件数检查
python 复制代码
cond_num = np.linalg.cond(a)
if cond_num > 1e10:
    print("矩阵接近奇异!")

八、常见错误排查

  1. 非方阵求逆

    python 复制代码
    # 错误示例
    a = np.array([[1,2,3], [4,5,6]])
    np.linalg.inv(a)  # 触发LinAlgError
  2. 精度损失

    python 复制代码
    a = np.array([[1e-10, 0], [0, 1e-10]])
    inv_a = np.linalg.inv(a)  # 结果可能包含极大数值
相关推荐
新子y几秒前
【小白笔记】最大交换 (Maximum Swap)问题
笔记·python
ygyqinghuan1 小时前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交1 小时前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
程序员爱钓鱼1 小时前
Python编程实战 · 基础入门篇 | Python的缩进与代码块
后端·python
pr_note2 小时前
python|if判断语法对比
python
newxtc3 小时前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen3 小时前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室4 小时前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
apocelipes4 小时前
golang unique包和字符串内部化
java·python·性能优化·golang
Geoking.5 小时前
NumPy zeros() 函数详解
python·numpy