PyTorch 中实现模型训练看板实时监控训练过程中的关键指标

在 PyTorch 中实现模型训练看板(Dashboard)可以帮助你实时监控训练过程中的关键指标(如损失、准确率、学习率等)。常用的工具包括 TensorBoardWeights & Biases (W&B)Matplotlib。以下是使用这些工具实现训练看板的详细方法。


1. 使用 TensorBoard

TensorBoard 是 PyTorch 官方推荐的训练可视化工具,支持实时监控训练过程中的各种指标。

安装 TensorBoard

bash 复制代码
pip install tensorboard

在 PyTorch 中使用 TensorBoard

以下是一个简单的示例,展示如何在训练过程中记录损失和准确率。

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms

# 定义模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(28 * 28, 10)

    def forward(self, x):
        return self.fc(x.view(x.size(0), -1))

# 初始化模型、损失函数和优化器
model = SimpleModel()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 加载数据集
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

# 初始化 TensorBoard
writer = SummaryWriter('runs/experiment_1')

# 训练循环
for epoch in range(5):
    running_loss = 0.0
    correct = 0
    total = 0

    for i, (inputs, labels) in enumerate(train_loader):
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # 记录损失
        running_loss += loss.item()
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

        if i % 100 == 99:  # 每 100 个 batch 记录一次
            avg_loss = running_loss / 100
            accuracy = 100 * correct / total
            print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss={avg_loss:.4f}, Accuracy={accuracy:.2f}%')

            # 将损失和准确率写入 TensorBoard
            writer.add_scalar('Training Loss', avg_loss, epoch * len(train_loader) + i)
            writer.add_scalar('Training Accuracy', accuracy, epoch * len(train_loader) + i)

            running_loss = 0.0
            correct = 0
            total = 0

# 关闭 TensorBoard
writer.close()

启动 TensorBoard

在终端运行以下命令启动 TensorBoard:

bash 复制代码
tensorboard --logdir=runs

然后在浏览器中打开 http://localhost:6006 查看训练看板。


2. 使用 Weights & Biases (W&B)

Weights & Biases 是一个强大的实验跟踪工具,支持实时监控训练过程,并且可以与其他团队成员共享结果。

安装 W&B

bash 复制代码
pip install wandb

在 PyTorch 中使用 W&B

以下是一个简单的示例:

python 复制代码
import wandb
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 初始化 W&B
wandb.init(project="pytorch-dashboard-example", config={
    "learning_rate": 0.01,
    "epochs": 5,
    "batch_size": 64
})

# 定义模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(28 * 28, 10)

    def forward(self, x):
        return self.fc(x.view(x.size(0), -1))

# 初始化模型、损失函数和优化器
model = SimpleModel()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=wandb.config.learning_rate)

# 加载数据集
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=wandb.config.batch_size, shuffle=True)

# 训练循环
for epoch in range(wandb.config.epochs):
    running_loss = 0.0
    correct = 0
    total = 0

    for i, (inputs, labels) in enumerate(train_loader):
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # 记录损失和准确率
        running_loss += loss.item()
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

        if i % 100 == 99:  # 每 100 个 batch 记录一次
            avg_loss = running_loss / 100
            accuracy = 100 * correct / total
            print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss={avg_loss:.4f}, Accuracy={accuracy:.2f}%')

            # 将指标记录到 W&B
            wandb.log({
                "Epoch": epoch + 1,
                "Batch": i + 1,
                "Training Loss": avg_loss,
                "Training Accuracy": accuracy
            })

            running_loss = 0.0
            correct = 0
            total = 0

# 完成训练
wandb.finish()

查看 W&B 看板

运行代码后,可以在 W&B 的网页端查看实时训练看板。


3. 使用 Matplotlib

如果你需要一个简单的本地可视化工具,可以使用 Matplotlib 绘制训练过程中的指标。

安装 Matplotlib

bash 复制代码
pip install matplotlib

在 PyTorch 中使用 Matplotlib

以下是一个简单的示例:

python 复制代码
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 定义模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(28 * 28, 10)

    def forward(self, x):
        return self.fc(x.view(x.size(0), -1))

# 初始化模型、损失函数和优化器
model = SimpleModel()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 加载数据集
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

# 记录训练过程中的指标
losses = []
accuracies = []

# 训练循环
for epoch in range(5):
    running_loss = 0.0
    correct = 0
    total = 0

    for i, (inputs, labels) in enumerate(train_loader):
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # 记录损失和准确率
        running_loss += loss.item()
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

        if i % 100 == 99:  # 每 100 个 batch 记录一次
            avg_loss = running_loss / 100
            accuracy = 100 * correct / total
            print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss={avg_loss:.4f}, Accuracy={accuracy:.2f}%')

            losses.append(avg_loss)
            accuracies.append(accuracy)

            running_loss = 0.0
            correct = 0
            total = 0

# 绘制损失和准确率曲线
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(losses, label='Training Loss')
plt.xlabel('Batch')
plt.ylabel('Loss')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(accuracies, label='Training Accuracy')
plt.xlabel('Batch')
plt.ylabel('Accuracy')
plt.legend()

plt.show()

总结

  • TensorBoard:适合本地实时监控,功能强大,支持多种可视化。
  • Weights & Biases:适合团队协作和实验跟踪,支持云端存储和共享。
  • Matplotlib:适合简单的本地可视化,无需额外依赖。

根据你的需求选择合适的工具来实现模型训练看板。

相关推荐
吃茄子的猫5 小时前
quecpython中&的具体含义和使用场景
开发语言·python
珠海西格电力5 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
じ☆冷颜〃5 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
数据大魔方6 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
启途AI6 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_16 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
APIshop6 小时前
Python 爬虫获取 item_get_web —— 淘宝商品 SKU、详情图、券后价全流程解析
前端·爬虫·python
楚来客6 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨6 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦6 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae