机器学习数学基础:40.结构方程模型(SEM)中卡方值与卡方自由度比

结构方程模型(SEM)中卡方值与卡方自由度比教程

在结构方程模型分析里,卡方值和卡方自由度比是评估模型拟合程度的重要指标,下面为大家详细介绍。

一、卡方值(CMIN)

(一)基本概念与别称

卡方值,也被叫做差异值、差异值函数、似然比卡方等,英文缩写为CMIN,符号表示为(\chi^{2}) ,用于衡量样本协方差矩阵与隐含协方差矩阵之间的差异。

(二)计算方法

在极大似然法(ML法)或广义最小二乘法(GLS法)中,卡方值的计算公式是 (CMIN = (N - 1)FMIN) 。这里的 (N) 代表样本数量,也就是你收集的数据里包含的样本个数,比如调查了100个学生,(N) 就是100;(FMIN) 是通过ML或GLS法估计得到的拟合函数值,它是模型运算过程中的一个中间结果。

(三)评估模型拟合的判断标准

  • 完全拟合情况:当卡方值为0 时,这意味着样本协方差矩阵和隐含协方差矩阵完全一样,也就是设定的模型和实际数据完美匹配。像饱和模型,它包含了所有可能的参数关系,所以卡方值就是0 。
  • 显著性判断:在统计检验里,我们还会看 (p) 值。如果 (p < 0.05) ,就表明样本协方差矩阵和隐含协方差矩阵有明显差异,说明模型和实际数据拟合得不太好;要是 (p > 0.05) ,则说明两者差异不显著,模型与数据拟合较好。

(四)卡方值的影响因素

  • 样本量的影响:样本量越大,卡方值越容易变得显著。比如原本小样本时模型拟合看起来还行,但增加样本量后,卡方值可能就会变大,导致模型被拒绝的概率增加。这是因为大样本能捕捉到更多细微差异。
  • 变量数量的影响:模型里的变量越多,卡方值越容易膨胀。因为变量多了,它们之间的相关关系变得复杂,模型假设的变量关系和实际数据中的关系可能对不上,产生矛盾,使得模型拟合变差。
  • 数据分布的影响:卡方值对数据的多变量正态性非常敏感。如果样本数据不满足多变量正态分布,卡方值就容易变得显著,影响对模型拟合的判断。

(五)在模型分析中的地位

卡方值是最基础的拟合度指标,很多其他拟合度指标,比如适配度指数(GFI)、调整后适配度指数(AGFI)、赤池信息准则(AIC)等,都是以卡方值为基础计算出来的。所以在结构方程模型的报告分析里,通常都会有卡方值这一项。

二、卡方自由度比

(一)基本概念

在结构方程模型中,模型估计的自由参数越多,自由度就越小,模型也会越复杂,拟合难度增大。同时,样本数增多会让卡方值膨胀,影响模型拟合判断。而卡方自由度比,就是同时考虑自由度和卡方值大小,用卡方值除以自由度得到的比值,也叫标准化卡方值、规范卡方值。

(二)评估模型拟合的判断标准

不同学者对合理的卡方自由度比有不同建议:

  • Wheaton等(1977)认为卡方自由度比应小于5才合理。
  • Carmines和McIver(1981)建议介于1 - 2或1 - 3之间,模型拟合才可接受。
  • Marsh和Hocevar觉得应低于2才合理。
  • Kline(2005)认为3以内可接受。
  • Schumacker和Lomax(2004)认为5以内也能接受。
  • Byrne(1989)提出超过2就表示模型拟合不足。

综合来看,一般认为卡方自由度比小于1 时,模型存在过度拟合问题;在1 - 3之间,模型拟合较好;较为宽松的标准是不超过5 ,超过这个范围,模型拟合度就比较差了。

相关推荐
董厂长8 分钟前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
董董灿是个攻城狮3 小时前
5分钟搞懂什么是窗口注意力?
算法
Dann Hiroaki3 小时前
笔记分享: 哈尔滨工业大学CS31002编译原理——02. 语法分析
笔记·算法
G皮T3 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼4 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间4 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享4 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾4 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码4 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5895 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉