深度学习笔记——神经网络

本文为在拓尔思智能举办的训练营中学习内容的总结,部分内容摘自百度百科

个人在这里推荐一个好用的软件,Trae,主要是免费。

人工神经元是人工神经网络的基本单元。模拟生物神经元,人工神经元有1个或者多个输入(模拟多个树突或者多个神经元向该神经元传递神经冲动);对输入进行加权求和(模拟细胞体将神经信号进行积累和树突强度不同);对输入之和使用激活函数计算活性值(模拟细胞体产生兴奋或者抑制);输出活性值并传递到下一个人工神经元(模拟生物神经元通过轴突将神经冲动输入到下一个神经元)。

nn.Linear线性层

线性层(Linear Layer)又称全连接层(Full-connected Layer),其每个神经元与上一层所有神经元相连,实现对前一层的线性组合/线性变换。每个神经元都和前一层中的所有神经元相连,每个神经元的计算方式是对上一层的加权求和的过程。因此,线性层可以采用矩阵乘法来实现。

python 复制代码
# nn.Linear(in_features, out_features, bias=True)
layer = nn.Linear(20, 30)
x = torch.randn(128, 20)
y = layer(x)
y.shape

输出:

torch.Size([128, 30])

这个代码实现从20个特征点向30个的自由转移,也就是线性层的作用。

relu函数:

ReLU,全称为:Rectified Linear Unit,是一种人工神经网络中常用的激活函数,通常意义下,其指代数学中的斜坡函数,即f(x)=max(0,x)

他的应用其实就是把小于0的数值归零

激活函数:是对特征进行非线性的变化,赋予多层神经网络具有深度的意义。

参考了该文章一些内容:

深入理解ReLU函数(ReLU函数的可解释性)-CSDN博客

相关推荐
灰灰勇闯IT1 分钟前
从零到一——CANN 社区与 cann-recipes-infer 实践样例的启示
人工智能
小白狮ww4 分钟前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
小镇敲码人6 分钟前
深入剖析华为CANN框架下的Ops-CV仓库:从入门到实战指南
c++·python·华为·cann
lili-felicity6 分钟前
CANN优化LLaMA大语言模型推理:KV-Cache与FlashAttention深度实践
人工智能·语言模型·llama
程序猿追8 分钟前
深度解码昇腾 AI 算力引擎:CANN Runtime 核心架构与技术演进
人工智能·架构
金融RPA机器人丨实在智能8 分钟前
Android Studio开发App项目进入AI深水区:实在智能Agent引领无代码交互革命
android·人工智能·ai·android studio
lili-felicity12 分钟前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
做人不要太理性12 分钟前
CANN Runtime 运行时组件深度解析:任务下沉执行、异构内存规划与全栈维测诊断机制
人工智能·神经网络·魔珐星云
不爱学英文的码字机器13 分钟前
破壁者:CANN ops-nn 仓库与昇腾 AI 算子优化的工程哲学
人工智能
晚霞的不甘16 分钟前
CANN 编译器深度解析:TBE 自定义算子开发实战
人工智能·架构·开源·音视频