win11/win10+tensorflow2.9.0+cuda11.2.1+cudnn8.1.1

win11/win10+tensorflow2.9.0+cuda11.2.1+cudnn8.1.1

1.查看显卡支持的最高cuda版本

我是win11系统


所以只要下载的cuda低于查看的版本,显卡驱动就支持,向下兼容。

但是要注意

  • CUDA 即英伟达的显卡并行计算框架,nvidia-smi 可以查看
    tensorflow-gpu的运行需要它的底层支持,它是一个计算框架,抽象层次比驱动高,每个版本的CUDA都是基于一定版本的驱动建立的,所以它对驱动的最低版本是有要求的
  • cuDNN 基于CUDA架构的神经网络库
    是专门用于神经网络计算的加速包,可以看作是CUDA的一部分(并行计算框架下的一个包)
  • tensorflow-gpu
    tensorflow-gpu的运行需要用到CUDA框架, 特别是cuDNN库,就像CUDA是基于特定版本驱动构建一样,tensorflow-gpu也是调用特定版本的CUDA,二者存在对应关系
java 复制代码
显卡驱动决定了CUDA的最高版本

CUDA决定了cuDNN的版本

CUDA决定了tensorflow-gpu的版本

tensorflow-gpu决定了python的版本
复制代码
进cmd
输入nvidia-smi

可以看到TensorFlow-gpu对应的cuda最高版本为11.2,但是点进去发现最高只支持win10系统,没有win11的选项。最后实测win11也是向下兼容的,直接开整。

tensorflow官网查看对应版本: https://tensorflow.google.cn/install/source_windows?hl=zh-cn

2.cuda安装

cuda官网链接:https://developer.nvidia.com/cuda-toolkit-archive/

我选择的版本是11.2.1

可以看到没有win11选项,直接选中win10就行。

下载完毕后直接一路next安装。

安装好后cmd命令行中测试一下

复制代码
cmd
nvcc --version

3.cudnn

cudnn官网链接:https://developer.nvidia.com/rdp/cudnn-archive#a-collapse51b

我选择的是8.1.1版本

下载好了解压后,将cudnn里面的bin、include、lib文件夹所有内容复制到对应的cuda文件夹C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1下面。

4.Tensorflow-GPU

4.1创建一个新的conda环境

复制代码
conda create --name tf22 python=3.8
activate tf22
pip install tensorflow-gpu==2.9.0 -i https://pypi.mirrors.ustc.edu.cn/simple

python版本我这里选择3.8,tensorflow-gpu一定要指定好版本。

pip安装比较慢,可以使用镜像

复制代码
中科大镜像:https://pypi.mirrors.ustc.edu.cn/simple

豆瓣镜像:http://pypi.douban.com/simple

阿里镜像:https://mirrors.aliyun.com/pypi/simple

百度镜像:https://mirror.baidu.com/pypi/simple

激活刚刚创建的环境

在创建的环境中直接使用pip安装,建议使用镜像安装,速度很快。

4.2 测试

使用PyCharm简单测试,注意如果是中途修改过环境依赖中的东西,例如重新安装过TensorFlow,要重启PyCharm,重新导入依赖才能生效,否则会出现已经成功安装但是却输出False情况。

python 复制代码
import tensorflow as tf
print(tf.version)
print(tf.config.list_physical_devices('GPU'))
print(tf.test.is_gpu_available())

查看结果,可以看到输出了显卡的有关信息,表示安装成功。如果最后没有出现True和显卡信息,则说明中间过程可能出现了问题,可以先试着重启一下

PyCharm再试试。

最后也有人使用高版本cuda11.7成功了,也可以参考。

win11+cuda11.7+cudnn8.5+Tensorflow-GPU : https://www.cnblogs.com/LandWind/p/win11-cuda-cudnn-Tensorflow-GPU-env-start.html

相关推荐
是小蟹呀^6 小时前
卷积神经网络(CNN):池化操作
人工智能·深度学习·神经网络·cnn
草莓熊Lotso6 小时前
远程控制软件实测!2026年1月远程软件从“夯”到“拉”全功能横评
运维·服务器·数据库·人工智能
Pyeako6 小时前
opencv计算机视觉--光流估计&视频读取方法
python·opencv·计算机视觉·pycharm·角点检测·光流估计·视频读取方法
发哥来了6 小时前
主流AI视频生成模型商用化能力评测:三大核心维度对比分析
大数据·人工智能·音视频
应用市场6 小时前
【自动驾驶感知】基于3D部件引导的图像编辑:细粒度车辆状态理解技术详解
人工智能·3d·自动驾驶
量子-Alex6 小时前
【大模型技术报告】通义千问-VL:一款多功能视觉语言模型,支持理解、定位、文本识别等广泛任务
人工智能·语言模型·自然语言处理
艾莉丝努力练剑6 小时前
【Linux进程控制(三)】实现自主Shell命令行解释器
linux·运维·服务器·c++·人工智能·安全·云原生
何中应6 小时前
PyCharm报`Invalid Python SDK`错误
ide·python·pycharm
薛定谔的猫19826 小时前
十四、基于 BERT 的微博评论情感分析模型训练实践
人工智能·深度学习·bert
asaotomo6 小时前
一款 AI 驱动的新一代安全运维代理 —— DeepSentry(深哨)
运维·人工智能·安全·ai·go