RocketMQ提供了哪些过滤机制?

前言

本篇文章比较简单,分别介绍RocketMQ支持几种过滤机制,其原理和使用。

RocketMQ 提供了多种消息过滤机制,帮根据业务需求高效筛选消息,可以减少不必要的消息传输和处理。以下是其核心过滤机制及使用场景:


1. Tag 标签过滤

  • 原理
    每个消息发送时可附加一个 Tag(字符串标签),消费者订阅时指定一个或多个 Tag,Broker 会过滤出匹配 Tag 的消息投递给消费者。

  • 使用方式

    • 生产者 :发送消息时设置 setTags

      java 复制代码
      Message msg = new Message("TopicTest", "TagA", "Hello RocketMQ".getBytes());
    • 消费者 :订阅时指定 Tag(支持 * 表示全部,|| 表示或关系)。

      java 复制代码
      consumer.subscribe("TopicTest", "TagA || TagB");
  • 特点

    • 高效:Broker 端过滤,性能损耗低。
    • 简单:仅支持精确匹配,适用于简单分类场景(如订单状态分类)。

2. SQL92 属性过滤

  • 原理
    基于消息的 自定义属性(Key-Value) ,通过 SQL 表达式进行复杂条件过滤(如数值比较、逻辑运算)。需开启 Broker 的 enablePropertyFilter=true

  • 使用方式

    • 生产者 :为消息添加自定义属性。

      java 复制代码
      Message msg = new Message("TopicTest", "TagA", "Hello RocketMQ".getBytes());
      msg.putUserProperty("a", "10");
      msg.putUserProperty("b", "5");
    • 消费者 :订阅时编写 SQL 表达式。

      java 复制代码
      consumer.subscribe("TopicTest", MessageSelector.bySql("a > 5 AND b = '5'"));
  • 特点

    • 灵活 :支持复杂逻辑(如 >, <, BETWEEN, IS NULL 等)。
    • 性能损耗:相比 Tag 过滤略高,需评估表达式复杂度。

3. 类过滤(Class Filter)

  • 原理
    允许用户自定义 Java 类实现过滤逻辑,Broker 加载该类并调用其方法判断消息是否投递。适用于高度定制化的过滤需求。

  • 使用方式

    • 实现接口 :编写类实现 org.apache.rocketmq.common.filter.MessageFilter

      java 复制代码
      public class CustomFilter implements MessageFilter {
          @Override
          public boolean match(MessageExt msg, FilterContext context) {
              // 自定义过滤逻辑
              return msg.getUserProperty("region").equals("CN");
          }
      }
    • 部署类 :将编译后的类文件上传到 Broker 指定路径(需配置 filterSupportRetry=true)。

    • 消费者订阅 :指定过滤类名。

      java 复制代码
      consumer.subscribe("TopicTest", MessageSelector.byFilterClass("com.example.CustomFilter"));
  • 特点

    • 高度灵活:可编写任意复杂逻辑(如结合外部配置或数据库)。
    • 维护成本高:需管理类的版本和部署,适合有特殊需求的场景。

对比与选型建议

机制 性能 灵活性 适用场景
Tag 过滤 低(精确匹配) 简单分类(如订单状态、日志类型)
SQL92 复杂属性条件(如价格范围、地域)
类过滤 极高(自定义) 特殊逻辑(需动态规则或外部查询)

注意事项

  1. Broker 配置 :SQL 和类过滤需 Broker 开启支持(enablePropertyFilterfilterSupportRetry)。
  2. 版本兼容性:SQL92 过滤需 RocketMQ 4.3.0+,类过滤需 4.6.0+。
  3. 生产环境慎用类过滤:频繁更新过滤类可能导致服务中断,建议优先使用 Tag 或 SQL 过滤。

通过合理选择过滤机制,可以显著提升消息系统的效率和可维护性。

相关推荐
数据智能老司机2 分钟前
首选:Kafka 入门
大数据·kafka·消息队列
强盛小灵通专卖员8 分钟前
【边缘计算】RK3576算力评估
大数据·人工智能·深度学习·边缘计算·ei会议·中文核心·小论文
Watermelo6179 分钟前
复杂计算任务的智能轮询优化实战
大数据·前端·javascript·性能优化·数据分析·云计算·用户体验
长河_讲_ITIL443 分钟前
预告:AI赋能IT服务管理实践 |2025 “数字化时代的IT服务管理“Meetup-深圳站(9月20日)
大数据·运维·人工智能·itil·itil认证·itil培训
凉凉的知识库1 小时前
学习笔记:在PySpark中使用UDF
大数据·python·spark
YangYang9YangYan1 小时前
2025年数字化转型关键证书分析与选择指南
大数据·信息可视化
BD_Marathon2 小时前
【Flink】DataStream API (二)
大数据·flink
BD_Marathon2 小时前
【Flink】DataStream API (一)
大数据·flink
lifallen2 小时前
深入了解Flink核心:Slot资源管理机制
大数据·数据结构·数据库·算法·flink·apache
shinelord明4 小时前
【大数据技术实战】流式计算 Flink~生产错误实战解析
大数据·架构·flink·实时计算·计算机技术