几种常见的虚拟环境工具(Virtualenv、Conda、System Interpreter、Pipenv、Poetry)的区别和特点总结

在 PyCharm 中创建虚拟环境是一个非常直接的过程,可以帮助你管理项目依赖,确保不同项目之间的依赖不会冲突。

通过 PyCharm 创建虚拟环境

  1. 打开 PyCharm 并选择或创建一个项目。

  2. 打开项目设置

    • 在 Windows/Linux 上,可以通过点击 File > Settings

    • 在 macOS 上,可以通过点击 PyCharm > Preferences

  3. 选择 Python 解释器

    • 在设置窗口中,选择 Project: <YourProjectName> > Python Interpreter
  4. 创建虚拟环境

    • 点击齿轮图标(位于 Python 解释器选择框旁边),选择 Add

    • 在弹出的窗口中,你可以选择虚拟环境的类型,如下

这几个选项有什么区别?

以下是几种常见的虚拟环境工具(Virtualenv、Conda、System Interpreter、Pipenv、Poetry)的区别和特点总结:


1. Virtualenv

  • 核心功能

    • 创建独立的 Python 环境,隔离全局环境。

    • 仅支持 Python,依赖 pip 安装包。

  • 特点

    • 轻量级,专注于 Python 包隔离。

    • 需要手动激活和管理环境(source venv/bin/activate)。

    • 依赖通过 requirements.txt 管理。

  • 适用场景

    • 简单的 Python 项目,不需要复杂依赖管理。

2. Conda

  • 核心功能

    • 跨平台包和环境管理工具,支持多语言(Python、R、C/C++等)。

    • 可管理 Python 版本和非 Python 依赖(如科学计算库的二进制文件)。

  • 特点

    • 内置包管理器(conda install),解决依赖冲突能力更强。

    • 提供预编译的二进制包(适合科学计算场景,如 NumPy、TensorFlow)。

    • 独立于系统 Python,可管理多个 Python 版本。

  • 适用场景

    • 数据科学、机器学习项目,依赖复杂或需要跨语言支持。

3. 系统解释器(System Interpreter)

  • 核心功能

    • 直接使用操作系统全局安装的 Python 环境。
  • 特点

    • 所有项目共享同一环境,容易导致依赖冲突。

    • 无需额外工具,但缺乏隔离性。

  • 适用场景

    • 简单脚本或临时测试(不推荐用于正式项目)。

4. Pipenv

  • 核心功能

    • 结合 Virtualenv + pip + 依赖管理工具。

    • 自动生成 PipfilePipfile.lock,管理依赖版本和哈希。

  • 特点

    • 提供依赖锁定和确定性构建(类似 package-lock.json)。

    • 支持自动激活虚拟环境(通过 pipenv shell)。

    • 官方推荐但逐渐被 Poetry 取代。

  • 适用场景

    • 需要简化依赖管理的 Python 项目。

5. Poetry

  • 核心功能

    • 集依赖管理、虚拟环境、打包发布于一体。

    • 使用 pyproject.toml 统一配置(遵循 PEP 621 标准)。

  • 特点

    • 自动解析依赖版本,生成 poetry.lock 文件。

    • 支持打包和发布到 PyPI。

    • 更现代化的工具链,替代 Pipenv。

  • 适用场景

    • 需要规范依赖管理、打包和发布的 Python 项目。

6.对比表格

工具 语言支持 依赖管理 环境隔离 包管理 核心优势
Virtualenv Python requirements.txt ✔️ pip 轻量级,纯 Python 隔离
Conda 多语言 environment.yml ✔️ conda 跨语言依赖管理,科学计算友好
系统解释器 Python 全局依赖 pip 无需配置,但风险高
Pipenv Python Pipfile ✔️ pipenv 依赖锁定,自动环境管理
Poetry Python pyproject.toml ✔️ poetry 依赖管理 + 打包发布一体化

7.选择建议

  1. 简单项目 → Virtualenv 或系统解释器(慎用)。

  2. 科学计算/复杂依赖 → Conda。

  3. 现代 Python 开发 → Poetry(推荐)或 Pipenv。

  4. 需要打包发布 → Poetry。

相关推荐
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
njsgcs2 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue
io_T_T2 小时前
迭代器 iteration、iter 与 多线程 concurrent 交叉实践(详细)
python
华研前沿标杆游学2 小时前
2026年走进洛阳格力工厂参观游学
python
Carl_奕然2 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
AI小怪兽2 小时前
基于YOLOv13的汽车零件分割系统(Python源码+数据集+Pyside6界面)
开发语言·python·yolo·无人机
wszy18093 小时前
新文章标签:让用户一眼发现最新内容
java·python·harmonyos
Eric.Lee20213 小时前
python实现 mp4转gif文件
开发语言·python·手势识别·手势交互·手势建模·xr混合现实
EntyIU3 小时前
python开发中虚拟环境配置
开发语言·python
wszy18093 小时前
顶部标题栏的设计与实现:让用户知道自己在哪
java·python·react native·harmonyos