第P7周:马铃薯病害识别(VGG-16复现)

一.前期准备

1.设置GPU

复制代码
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms,datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings('ignore')

device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device

2.导入数据

复制代码
data_dir='../data/PotatoPlants/PotatoPlants'
data_dir=pathlib.Path(data_dir)

data_paths=list(data_dir.glob('*'))
classeNames=[str(path).split('\\')[4] for path in data_paths]
classeNames
复制代码
train_transforms=transforms.Compose([
    transforms.Resize([224,224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485,0.456,0.406],
        std=[0.229,0.224,0.225]
    )
])
test_transforms=transforms.Compose([
    transforms.Resize([224,224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485,0.456,0.406],
        std=[0.229,0.224,0.225]
    )
])
total_data=datasets.ImageFolder('../data/PotatoPlants/PotatoPlants',transform=train_transforms)
复制代码
total_data.class_to_idx

3.划分数据集

复制代码
train_size=int(0.8*len(total_data))
test_size=len(total_data)-train_size
train_dataset,test_dataset=torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset
复制代码
batch_size=32

train_dl=torch.utils.data.DataLoader(train_dataset,
                                     batch_size=batch_size,
                                     shuffle=True)
test_dl=torch.utils.data.DataLoader(test_dataset,
                                    batch_size=batch_size,
                                    shuffle=True)
复制代码
for x,y in test_dl:
    print('shape of [N,C,W,H]',x.shape)
    print('shape of y',y.shape,y.dtype)
    break

二.VGG-16模型

1.搭建模型

复制代码
import torch.nn.functional as F

class vgg16(nn.Module):
    def __init__(self):
        super(vgg16, self).__init__()
        # 卷积块1
        self.block1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块2
        self.block2 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块3
        self.block3 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块4
        self.block4 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块5
        self.block5 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )


        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=512*7*7, out_features=4096),
            nn.ReLU(),
            nn.Linear(in_features=4096, out_features=4096),
            nn.ReLU(),
            nn.Linear(in_features=4096, out_features=3)
        )

    def forward(self, x):

        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)
        x = self.block4(x)
        x = self.block5(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))


model = vgg16().to(device)
model

2.查看模型详情

复制代码
import torchsummary as summary

summary.summary(model,(3,224,224))

三.训练模型

1.编写训练函数

复制代码
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率


    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)


        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失


        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新


        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()


    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

2.编写测试函数

复制代码
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0


    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)


            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)


            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3.正式训练

复制代码
import copy

optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数

epochs     = 40

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):


    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)


    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)


    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)


    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)


    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']


    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
                          epoch_test_acc*100, epoch_test_loss, lr))


# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')

四.结果可视化

1.Loss与Accuracy图

复制代码
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

from datetime import datetime
current_time = datetime.now() # 获取当前时间

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2.指定图片进行预测

复制代码
from PIL import Image

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):


    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)


    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

3.模型评估

复制代码
# 预测训练集中的某张照片
predict_one_image(image_path=r'D:\AI_Learning\deep_learning\data\PotatoPlants\PotatoPlants\Early_blight\0a8a68ee-f587-4dea-beec-79d02e7d3fa4___RS_Early.B 8461.JPG',
                  model=model,
                  transform=train_transforms,
                  classes=classes)

基于 VGG16 的马铃薯病害分类模型,完成了数据预处理、模型训练、测试评估和可视化过程,并最终保存了最优模型,实现了单张图片的病害预测。

相关推荐
仙人掌_lz15 分钟前
微调ModernBERT为大型语言模型打造高效“过滤器”
人工智能·python·ai·语言模型·自然语言处理·bert
小众AI18 分钟前
fastmcp: 更好用的 MCP Python 框架
开发语言·人工智能·python
cdut_suye22 分钟前
【Linux系统】从零开始构建简易 Shell:从输入处理到命令执行的深度剖析
java·linux·服务器·数据结构·c++·人工智能·python
小屁孩大帅-杨一凡27 分钟前
Azure Document Intelligence
后端·python·microsoft·flask·azure
收到求救信号1 小时前
MAD-TD: MODEL-AUGMENTED DATA STABILIZES HIGH UPDATE RATIO RL
人工智能·深度学习·机器学习
政东.zd1 小时前
部署dify
python
萧鼎1 小时前
深入探索 Python 的 QuTiP 5 库:量子计算与开放量子系统模拟的利器
开发语言·python·量子计算
Francek Chen2 小时前
【现代深度学习技术】注意力机制04:Bahdanau注意力
人工智能·pytorch·深度学习·神经网络·注意力机制
yousuotu2 小时前
python如何提取Chrome中的保存的网站登录用户名密码?
java·chrome·python
白熊1882 小时前
【计算机视觉】OpenCV实战项目:Deep Machine Learning Tutors:基于OpenCV的实时面部识别系统深度解析
opencv·机器学习·计算机视觉