模型评估——acc、P、R、F值、交叉验证、K折交叉验证

模型评估:对预测函数地预测精度的评估。
多重回归:涉及三个及其以上的变量的回归问题。
评估模型的方法:

交叉验证:将数据集分成测试集和训练集,可以采用3:7或者2:8的比例方式进行划分 ,使用测试集进行对模型的评估,对测试数据计算测试数据的误差的平方,再取其平均值,也就是以前提及的均方差MSE(Mean Square Error,误差越小,精度越高)


TP:True Positive,预测正确(T),实际为正,预测为正

FP:False Positive,预测错误(F),实际为负,预测为正

TN:True Negative,预测正确(T),实际为负,预测为负

FN:False Negative,预测错误(F),实际为正,预测为负
分类准确率公式:其值越高,则模型精度越高,意味着模型越好(在数据量平衡的情况下)


如何在不考虑数据量是否均衡的情况下,使得其能更好评估模型,这就涉及精确率公式:

该值越高,说明被错误分类的样本越少


同时还有另外一个评估模型的指标公式,其为召回率Recall:


三个公式总结图:


所以一般评估模型采用分类准确率acc、精确率P、召回率R来综合来评价一个模型。但是一般来说,精确率P和召回率R会一个高一个低,需要对其进行取舍。所以为了更为全面的评估一个模型的好坏,故引入F值,F值是能够综合评定模型性能的指标。F值的公式如下所示:

该F值的公式称为F1值更为准确,因为这是在β权重为1时的公式表达式,F1值为精确率和召回率的调和平均值。其更为普适的公式为Fβ公式


在计算P、R、F值的时,统计的对象可能是TP,也可以是TN。那么我们该如何选择呢?
当面对数据不平衡的情况,使用数据较少的数据集作为统计对象,来计算其对应的P、R、F值。即用数量少的。
K折交叉验证:

不单单可以将数据分成3:7或者2:8,这里有一个K折交叉验证,将全部的数据集划分为K份,将K-1份数据作为训练数据,剩下的一份作为测试数据,然后每次更好训练数据和测试数据,重复K次交叉验证。再最后计算K个精度的平均值,作为其最终的精度。

那么K折交叉验证的K值的确定怎么设定合适呢?

设定过大,会增加时间的耗费。所以只能尽可能凭借经验确定一个合适的K值。

相关推荐
IT猿手12 分钟前
基于牛优化( OX Optimizer,OX)算法的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
人工智能·算法·机器学习·matlab·无人机
Y1nhl19 分钟前
搜广推校招面经五十
人工智能·pytorch·深度学习·算法·机器学习·推荐算法·搜索算法
_zwy1 小时前
QWQ-32B 于蓝耘 MaaS 平台:基于 Transformer 架构的 AIGC 推理优化策略
人工智能·深度学习·机器学习·自然语言处理·aigc
Nil_cxc1 小时前
机器学习周报--文献阅读
人工智能·机器学习
終不似少年遊*2 小时前
实践-给图片右下角加opencv-logo
人工智能·python·opencv·机器学习·计算机视觉
四口鲸鱼爱吃盐3 小时前
CVPR2024 | TT3D | 物理世界中可迁移目标性 3D 对抗攻击
人工智能·深度学习·机器学习·3d·对抗样本
极客 - L U10 小时前
机器学习 : 训练过程
人工智能·机器学习
夏莉莉iy12 小时前
[ICLR 2025]CBraMod: A Criss-Cross Brain Foundation Model for EEG Decoding
人工智能·python·深度学习·神经网络·机器学习·计算机视觉·transformer
巷95512 小时前
KMeans实战——聚类和轮廓系数评估啤酒数据集
人工智能·机器学习