二次型 → 矩阵的正定性 → 特征值

二次型 → 矩阵的正定性 → 特征值

二次型

定义 含有 n n n个变量 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,⋯,xn的二次方程

x T A x + B x + α = 0 {\bm x}^{\rm T} {\bm A} {\bm x} + {\bm B} {\bm x} + \alpha = 0 xTAx+Bx+α=0

其中, x = ( x 1 , x 2 , ⋯   , x n ) T {\bm x} = (x_1, x_2, \cdots, x_n)^{\rm T} x=(x1,x2,⋯,xn)T, A = ( a i j ) {\bm A} = (a_{ij}) A=(aij)为 n × n n \times n n×n对称矩阵, B {\bm B} B为 1 × n 1 \times n 1×n矩阵, α \alpha α为常数。

称 n n n元函数

f ( x 1 , x 2 , ⋯   , x n ) = f ( x ) = x T A x = ∑ i = 1 n ( ∑ j = 1 n a i j x j ) x i f(x_1, x_2, \cdots, x_n) = f({\bm x}) = {\bm x}^{\rm T} {\bm A} {\bm x} = \sum_{i=1}^n \left( \sum_{j=1}^n a_{ij} x_j \right) x_i f(x1,x2,⋯,xn)=f(x)=xTAx=i=1∑n(j=1∑naijxj)xi

为二次方程关联的 n n n个变量的二次型,简称二次型。对称矩阵 A {\bm A} A称作二次型 f ( x ) f(x) f(x)的矩阵,矩阵 A {\bm A} A的秩称为二次型 f ( x ) f({\bm x}) f(x)的秩,二次型 f ( x ) f({\bm x}) f(x)也称作对称矩阵 A {\bm A} A的二次型。

定义 一个实对称矩阵 A {\bm A} A称为

  1. 正定的,若对 R n \mathbb{R}^n Rn中所有非零 x {\bm x} x, x T A x > 0 {\bm x}^{\rm T} {\bm A} {\bm x} > 0 xTAx>0;
  2. 负定的,若对 R n \mathbb{R}^n Rn中所有非零 x {\bm x} x, x T A x < 0 {\bm x}^{\rm T} {\bm A} {\bm x} < 0 xTAx<0;
  3. 半正定的,若对 R n \mathbb{R}^n Rn中所有非零 x {\bm x} x, x T A x ⩾ 0 {\bm x}^{\rm T} {\bm A} {\bm x} \geqslant 0 xTAx⩾0;
  4. 半负定的,若对 R n \mathbb{R}^n Rn中所有非零 x {\bm x} x, x T A x ⩽ 0 {\bm x}^{\rm T} {\bm A} {\bm x} \leqslant 0 xTAx⩽0;
  5. 不定的,若 x T A x {\bm x}^{\rm T} {\bm A} {\bm x} xTAx的取值有不同的符号。

作为一个性能指标,矩阵的二次型刻画矩阵的正定性。

特征值

很多应用问题都涉及将一个线性变换重复作用到一个向量上。求解这类问题的关键是找到一组新的基向量(特征向量),使得线性变换对该组基向量的作用仅是进行某种程度的收缩或拉伸,收缩或拉伸的倍数通常称为缩放因子(特征值)。

定义 令 A {\bm A} A为 n × n n \times n n×n矩阵,如果存在非零向量 x {\bm x} x使得

A x = λ x {\bm A}{\bm x} = \lambda {\bm x} Ax=λx

成立,则称数 λ \lambda λ是矩阵 A {\bm A} A的特征值,称非零向量 x {\bm x} x为属于(或对应于) λ \lambda λ的特征向量。

矩阵的正定性与特征值

对称矩阵的特征值均为实数,且存在一个由其特征向量组成的正交基。

  1. 正定矩阵:所有特征值取正实数的矩阵。
  2. 半正定矩阵:各个特征值取非负实数的矩阵。
  3. 负定矩阵:全部特征值为负实数的矩阵。
  4. 半负定矩阵:每个特征值取非正实数的矩阵。
  5. 不定矩阵:特征值有些取正实数,另一些取负实数的矩阵。

二次型与特征值

  1. 正定矩阵

    • 如果对于所有非零向量 x ∈ R n {\bm x} \in \mathbb{R}^n x∈Rn,都有 x T A x > 0 {\bm x}^{\rm T} {\bm A} {\bm x} > 0 xTAx>0,则称矩阵 A {\bm A} A是正定的。
    • 正定矩阵的所有特征值都是正数。
  2. 负定矩阵

    • 如果对于所有非零向量 x ∈ R n {\bm x} \in \mathbb{R}^n x∈Rn,都有 x T A x < 0 {\bm x}^{\rm T} {\bm A} {\bm x} < 0 xTAx<0,则称矩阵 A {\bm A} A是负定的。
    • 负定矩阵的所有特征值都是负数。
  3. 半正定矩阵

    • 如果对于所有非零向量 x ∈ R n {\bm x} \in \mathbb{R}^n x∈Rn,都有 x T A x ⩾ 0 {\bm x}^{\rm T} {\bm A} {\bm x} \geqslant 0 xTAx⩾0,则称矩阵 A {\bm A} A是半正定的。
    • 半正定矩阵的所有特征值都是非负的。
  4. 半负定矩阵

    • 如果对于所有非零向量 x ∈ R n {\bm x} \in \mathbb{R}^n x∈Rn,都有 x T A x ⩽ 0 {\bm x}^{\rm T} {\bm A} {\bm x} \leqslant 0 xTAx⩽0,则称矩阵 A {\bm A} A是半负定的。
    • 半负定矩阵的所有特征值都是非正的。
  5. 不定矩阵

    • 如果存在不同的非零向量 x ∈ R n {\bm x} \in \mathbb{R}^n x∈Rn,使得 x T A x {\bm x}^{\rm T} {\bm A} {\bm x} xTAx的取值有正有负,则称矩阵 A {\bm A} A是不定的。
    • 不定矩阵的特征值既有正的也有负的。
相关推荐
yyy(十一月限定版)21 分钟前
matlab矩阵的操作
算法·matlab·矩阵
ComputerInBook1 小时前
代数学基本概念理解——幺正矩阵(Unitary matrix)(酉矩阵?)
线性代数·矩阵·正交矩阵·幺正矩阵·酉矩阵
AI科技星4 小时前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
一碗姜汤4 小时前
【统计基础】从线性代数的直观角度理解SVD奇异值分解
线性代数
好奇龙猫4 小时前
【大学院-筆記試験練習:线性代数和数据结构(5)】
数据结构·线性代数
jinmo_C++6 小时前
Leetcode矩阵
算法·leetcode·矩阵
愚公搬代码21 小时前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
paixingbang1 天前
2026短视频矩阵服务商评测报告 星链引擎、河南云罗、数阶智能
大数据·线性代数·矩阵
scott1985121 天前
NVIDIA GPU内部结构:高性能矩阵乘法内核剖析
线性代数·矩阵·gpu·nvidia·cuda
AI科技星1 天前
能量绝对性与几何本源:统一场论能量方程的第一性原理推导、验证与范式革命
服务器·人工智能·科技·线性代数·算法·机器学习·生活