LLM论文笔记 25: Chain-of-Thought Reasoning without Prompting

  • Arxiv日期:2024.5.31
  • 机构:Google DeepMind

关键词

  • cot-decoding
  • 推理路径
  • pretrain

核心结论

  1. LLMs 不需要prompting就可以生成链式推理路径,prompting只是将这些能力显性化的一种手段

  2. cot path 往往与更高的model confidence相关,可以用作可靠性的metric

  3. 探索多样化的解码路径能有效挖掘模型的内在推理能力,而不仅仅依赖于模型规模或训练数据的多样性

  4. CoT-Decoding 可以弥补 模型未经过指令调优时的推理能力缺陷,并在指令调优的模型中进一步优化性能

  5. Cot-Decoding适用于多种任务和语言模型,显示出显著的通用性和鲁棒性

主要方法

(验证了内在推理能力的存在)使用pretrain模型,不使用greedy decoding,而是在第一个token预测使用top-k发现内化cot推理能力,且带cot的答案置信度更高

置信度衡量标准:

answer中每一个token在NTP时当前token和下一个token的概率差异

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
芷栀夏几秒前
CANN ops-math:从矩阵运算到数值计算的全维度硬件适配与效率提升实践
人工智能·神经网络·线性代数·矩阵·cann
肾透侧视攻城狮6 分钟前
《Transformer模型PyTorch实现全攻略:架构拆解、代码示例与优化技巧》
深度学习·transformer·构建transformer模型·定义多头注意力模块·定义位置前馈网络·构建解/编码器模块·训练transformer模型
Yuer20258 分钟前
为什么说在真正的合规体系里,“智能”是最不重要的指标之一。
人工智能·edca os·可控ai
一切尽在,你来9 分钟前
1.4 LangChain 1.2.7 核心架构概览
人工智能·langchain·ai编程
爱吃大芒果12 分钟前
CANN ops-nn 算子开发指南:NPU 端神经网络计算加速实战
人工智能·深度学习·神经网络
聆风吟º14 分钟前
CANN ops-nn 实战指南:异构计算场景中神经网络算子的调用、调优与扩展技巧
人工智能·深度学习·神经网络·cann
2601_9495936520 分钟前
CANN加速人脸检测推理:多尺度特征金字塔与锚框优化
人工智能
小刘的大模型笔记21 分钟前
大模型LoRA微调全实战:普通电脑落地,附避坑手册
人工智能·电脑
乾元21 分钟前
身份与访问:行为生物识别(按键习惯、移动轨迹)的 AI 建模
运维·网络·人工智能·深度学习·安全·自动化·安全架构
happyprince22 分钟前
2026年02月07日全球AI前沿动态
人工智能