【pyTorch】关于PyTorch的高级索引机制理解

python 复制代码
y_hat[[0, 1], y]

看起来简短,其实包含了 PyTorch 的高级索引(advanced indexing) 机制,

常用于分类任务中,从模型输出中取出正确类别对应的预测概率(或分数)

我们来一步步拆解 👇


🧩 一、先看变量定义

python 复制代码
y = torch.tensor([0, 2])
y_hat = torch.tensor([
    [0.1, 0.3, 0.6],
    [0.3, 0.2, 0.5]
])

可以理解为:

样本编号 模型预测概率(3类) 正确类别
第 0 个样本 [0.1, 0.3, 0.6] 0
第 1 个样本 [0.3, 0.2, 0.5] 2

🧮 二、代码含义

python 复制代码
y_hat[[0, 1], y]

这是一个行列双索引操作,等价于:

python 复制代码
torch.tensor([y_hat[0, y[0]], y_hat[1, y[1]]])

也就是:

复制代码
= [y_hat[0, 0], y_hat[1, 2]]

📊 三、一步步替换求值

从矩阵中取出对应元素:

索引 取出的元素
y_hat[0, 0] 第 0 行第 0 列 0.1
y_hat[1, 2] 第 1 行第 2 列 0.5

所以:

python 复制代码
y_hat[[0, 1], y] = tensor([0.1, 0.5])

🧠 四、这个操作在深度学习中的用途

这个技巧非常常见!尤其是在 交叉熵损失 (cross-entropy) 计算中。

假设 y_hat 是每个样本对所有类别的预测概率分布,y 是正确标签,

那这行代码可以提取出:

每个样本 "对应正确类别" 的预测概率。

例如:

python 复制代码
y_hat[[0, 1], y]
# → tensor([预测第0个样本属于真实类别的概率, 
#           预测第1个样本属于真实类别的概率])

然后就可以算交叉熵:

python 复制代码
loss = -torch.log(y_hat[[0, 1], y])

✅ 五、总结一句话

代码 含义
y_hat[[0, 1], y] 按行索引 [0, 1] 和对应列索引 y 同时取元素
= [y_hat[0, y[0]], y_hat[1, y[1]]] 等价的展开写法
结果 取出每个样本的正确类别预测值(常用于分类任务)

💡 口诀记忆:

y_hat[行索引, 列索引]

会"对齐"地从每一行中取出对应列的元素。

常用来拿到"每个样本在真实类别上的预测概率"。


具体理解

🧩 数据回顾

python 复制代码
y = torch.tensor([0, 2])
y_hat = torch.tensor([
    [0.1, 0.3, 0.6],
    [0.3, 0.2, 0.5]
])

🎨 图示说明

复制代码
          类别0    类别1    类别2
样本0 →   0.1      0.3      0.6
样本1 →   0.3      0.2      0.5

以及标签:

复制代码
y = [0, 2]

表示:

  • 样本 0 的真实类别是 0
  • 样本 1 的真实类别是 2

🔍 执行这句代码:

python 复制代码
y_hat[[0, 1], y]

等价于:

复制代码
取第 0 行的第 y[0]=0 列 → 0.1
取第 1 行的第 y[1]=2 列 → 0.5

✅ 可视化标注结果

复制代码
          类别0    类别1    类别2
样本0 →  [0.1]*    0.3      0.6
样本1 →   0.3      0.2    [0.5]*

星号 * 表示被选中的元素

最终输出:

复制代码
tensor([0.1, 0.5])

🧠 用途回顾

在分类任务里:

python 复制代码
loss = -torch.log(y_hat[[0, 1], y])

就是取出模型对真实标签类别的预测概率,再取负对数计算交叉熵损失。

相关推荐
Java后端的Ai之路5 小时前
【Python 教程15】-Python和Web
python
那个村的李富贵5 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
冬奇Lab6 小时前
一天一个开源项目(第15篇):MapToPoster - 用代码将城市地图转换为精美的海报设计
python·开源
腾讯云开发者6 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR6 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky7 小时前
大模型生成PPT的技术原理
人工智能
禁默8 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切8 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒8 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站8 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能