【论文阅读】Explainable Early Stopping for Action Unit Recognition

在训练深度神经网络(DNN)时,避免过拟合的常见技术是在专用的验证数据分区上监控性能,并在性能饱和时停止训练。这种方法只关注模型的行为,而完全忽略了模型内部发生了什么。

在本文中,我们使用代数拓扑来分析DNN在训练AU识别时的功能图的拓扑结构。我们将标准的带耐心的早期停止(ESP)[1]与迄今为止提出的仅有的两种基于拓扑的早期停止算法进行比较,即拓扑早期停止(TES)[3]和通过神经持久性实现的早期停止(ESNP)[17]。

拓扑早期停止(TES)[3]和通过神经持久性实现的早期停止(ESNP)[17]。两者都使用代数拓扑(更具体地说是持久同调)来计算所谓的贝蒂数曲线,该曲线在基于分析网络定义的拓扑空间中计算不同尺度上的空腔数量。在训练期间的每个周期中计算这种网络拓扑度量,并用作早期停止的标准。ESNP计算贝蒂数曲线的积分,并在它饱和时停止。另一方面,TES观察贝蒂数曲线峰值的密度,并在它开始向更高密度方向后退时停止。

3\] Ciprian A Corneanu, Meysam Madadi, Sergio Escalera, and Aleix MMartinez. What does it mean to learn in deep networks? and, how does one detect adversarial attacks? In Proceedings ofthe IEEE Conference on Computer Vision and Pattern Recognition, pages 4757--4766, 2019. \[17\] Bastian Rieck, Matteo Togninalli, Christian Bock, Michael Moor, MaxHorn, Thomas Gumbsch, and Karsten Borgwardt. Neural persistence:A complexity measure for deep neural networks using algebraic topology. arXiv preprint arXiv:1812.09764, 2018.

常规方法,计算两个神经元之间相关性,构造PD

DNN中的泛化学习通过在功能拓扑中创建一维、二维和三维空腔来定义,并且这些空腔从更高密度向更低密度移动[3]。过拟合表现为这些空腔在功能二元图中向更高密度回归。这一通用原则如图2(b)所示,是拓扑早期停止(TES)标准[3]的基础。在这里,我们将这一分析扩展到对象识别和标准网络架构之外

相关推荐
m0_6501082419 小时前
3D Gaussian Splatting:实时辐射场渲染的突破性方案
论文阅读·三维重建·3d高斯溅射·实时视角切换·自适应密度控制·可微光栅化器·灵活高斯基元
0x2111 天前
[论文阅读]AttnTrace: Attention-based Context Traceback for Long-Context LLMs
论文阅读
李加号pluuuus1 天前
【论文阅读】Ovi: Twin Backbone Cross-Modal Fusion for Audio-Video Generatio
论文阅读
蓝海星梦1 天前
Chain‑of‑Thought 推理链评估全解析:从参考方法到无参考指标
论文阅读·人工智能·自然语言处理·cot
有Li1 天前
D-EDL:用于鲁棒医学分布外检测的差异化证据深度学习|文献速递-医疗影像分割与目标检测最新技术
论文阅读·文献·医学生
HollowKnightZ2 天前
论文阅读笔记:Class-Incremental Learning: A Survey
论文阅读·笔记
Eastmount2 天前
[论文阅读] (45)C&S24 AISL: 基于攻击意图驱动与序列学习方法的APT攻击检测
论文阅读·系统安全·溯源图·攻击意图·apt攻击检测
小明_GLC2 天前
ITransformer: Inverted Transformers Are Effective for Time Series Forecasting
论文阅读
依夏c2 天前
【论文笔记•(多智能体)】Ask Patients with Patience
论文阅读
明明真系叻2 天前
2025.12.21论文阅读
论文阅读·量子计算