【论文阅读】Explainable Early Stopping for Action Unit Recognition

在训练深度神经网络(DNN)时,避免过拟合的常见技术是在专用的验证数据分区上监控性能,并在性能饱和时停止训练。这种方法只关注模型的行为,而完全忽略了模型内部发生了什么。

在本文中,我们使用代数拓扑来分析DNN在训练AU识别时的功能图的拓扑结构。我们将标准的带耐心的早期停止(ESP)[1]与迄今为止提出的仅有的两种基于拓扑的早期停止算法进行比较,即拓扑早期停止(TES)[3]和通过神经持久性实现的早期停止(ESNP)[17]。

拓扑早期停止(TES)[3]和通过神经持久性实现的早期停止(ESNP)[17]。两者都使用代数拓扑(更具体地说是持久同调)来计算所谓的贝蒂数曲线,该曲线在基于分析网络定义的拓扑空间中计算不同尺度上的空腔数量。在训练期间的每个周期中计算这种网络拓扑度量,并用作早期停止的标准。ESNP计算贝蒂数曲线的积分,并在它饱和时停止。另一方面,TES观察贝蒂数曲线峰值的密度,并在它开始向更高密度方向后退时停止。

3\] Ciprian A Corneanu, Meysam Madadi, Sergio Escalera, and Aleix MMartinez. What does it mean to learn in deep networks? and, how does one detect adversarial attacks? In Proceedings ofthe IEEE Conference on Computer Vision and Pattern Recognition, pages 4757--4766, 2019. \[17\] Bastian Rieck, Matteo Togninalli, Christian Bock, Michael Moor, MaxHorn, Thomas Gumbsch, and Karsten Borgwardt. Neural persistence:A complexity measure for deep neural networks using algebraic topology. arXiv preprint arXiv:1812.09764, 2018.

常规方法,计算两个神经元之间相关性,构造PD

DNN中的泛化学习通过在功能拓扑中创建一维、二维和三维空腔来定义,并且这些空腔从更高密度向更低密度移动[3]。过拟合表现为这些空腔在功能二元图中向更高密度回归。这一通用原则如图2(b)所示,是拓扑早期停止(TES)标准[3]的基础。在这里,我们将这一分析扩展到对象识别和标准网络架构之外

相关推荐
张较瘦_3 天前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
CV-杨帆3 天前
论文阅读:arxiv 2025 OptimalThinkingBench: Evaluating Over and Underthinking in LLMs
论文阅读
七元权3 天前
论文阅读-EfficientAD
论文阅读·深度学习·实时·异常检测
Matrix_113 天前
论文阅读:Multi-Spectral Image Color Reproduction
论文阅读·人工智能·计算摄影
噜~噜~噜~4 天前
论文笔记:“Mind the Gap Preserving and Compensating for the Modality Gap in“
论文阅读
张较瘦_4 天前
[论文阅读] AI+ | 从 “刚性科层” 到 “智能协同”:一文读懂 AI 应对国家安全风险的核心逻辑
论文阅读·人工智能
张较瘦_4 天前
[论文阅读] AI+ | GenAI重塑智慧图书馆:华东师大实践AI虚拟馆员,解放馆员聚焦高价值任务
论文阅读·人工智能
CoookeCola5 天前
MovieNet (paper) :推动电影理解研究的综合数据集与基准
数据库·论文阅读·人工智能·计算机视觉·视觉检测·database
张较瘦_6 天前
[论文阅读] AI+ | AI如何重塑审计行业?从“手工筛查”到“智能决策”:AI审计的核心逻辑与未来路径
论文阅读·人工智能
苦瓜汤补钙7 天前
论文阅读——Segment Anything(Meta AI)——SAM
论文阅读·图像处理·人工智能·nlp·ai编程